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Abstract—Heterogeneous multiprocessor systems on a chips
(MPSoCs) consisting of cores with different performance/power
characteristics are widely used in many real-time embedded
systems, where both soft-error reliability and lifetime reliabil-
ity are key concerns. Although existing efforts have investigated
related problems, they either focus on one of the two reliabil-
ity concerns or propose time-consuming scheduling algorithms
that cannot adequately address runtime workload and environ-
mental variations. This paper introduces an online framework
which is adaptive to runtime variations and maximizes soft-error
reliability while satisfying the lifetime reliability constraint for
soft real-time systems executing on MPSoCs that are composed of
high-performance cores and low-power (LP) cores. Based on each
core’s executing frequency and utilization, the framework per-
forms workload migration between high-performance cores and
LP cores to reduce power consumption and improve soft-error
reliability. Experimental results based on different hardware plat-
forms show that the proposed approach reduces the probability
of failures due to soft errors by at least 17% and 50% on aver-
age compared to a number of representative existing approaches
that satisfy the same lifetime reliability constraints.

Index Terms—Heterogeneous multiprocessor systems on a chip
(MPSoC), lifetime reliability, real-time embedded system, soft-
error reliability.
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I. INTRODUCTION

O ADDRESS power/energy concerns, various

heterogeneous multiprocessor systems on a chip
(MPSoCs) have been introduced [1]. A popular MPSoC
architecture that is often used in power/energy-conscious
real-time embedded applications is composed of pairs of
high-performance (HP) cores and low-power (LP) cores.
Following the terminology introduced by ARM [2], we
refer to this architecture as the “big-little” architecture.
Nvidia’s variable symmetric multiprocessing [3] is such an
example. Such HP and LP cores present unique performance,
power/energy, and reliability tradeoffs, which are investigated
in this paper.

Resource management in heterogeneous MPSoCs has been
widely studied [4]-[8], but few work targets the big-little
architecture [9]—-[12]. In this architecture, HP (LP) cores
are homogeneous and both HP and LP cores have the
same instruction set architecture. However, big-little type
MPSoCs may support different execution models. In one
model, represented by Nvidia’s TK1 [13] and Samsung’s
Exynos 5410 [14], one HP core is paired with one LP core,
and the HP and LP cores in the one pair cannot work
simultaneously. In another model, represented by Nvidia’s
TX2 [15] and NXP’s i.MX8 [16], although HP and LP cores
can work simultaneously, all HP (all LP) cores must exe-
cute at the same frequency. We aim to design a resource
management framework that is adaptive to different execution
models.

Since many real-time embedded systems are deployed in
critical applications and are expensive as well as inconvenient
to replace, lifetime reliability due to permanent faults' as well
as soft-error reliability due to transient faults are important
design considerations. Although there exist several efforts that
either target soft-error reliability [17]-[19] or lifetime relia-
bility [8], [20]-[23], only a few papers have examined both
soft-error reliability and lifetime reliability together [24]-[27].
In addition, runtime workload variations further complicate
the problem of improving the system overall reliability.

Hntermittent faults are unlikely to be strongly dependent on power
consumption and therefore are out of the scope of this paper.
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Hence, designing an online approach considering both lifetime
reliability and soft-error reliability becomes necessary.

This paper systematically addresses reliability concerns for
real-time systems running on big-little type MPSoCs. Since
transient faults occur much more frequently than permanent
faults [28], we focus on increasing soft-error reliability with-
out sacrificing lifetime reliability. Specifically, we solve the
problem of maximizing soft-error reliability while satisfying
temperature, real-time, and lifetime reliability requirements.
Our problem is motivated by many real world applica-
tions, such as mobile devices and in-vehicle infotainment
systems [29]. We are particularly interested in developing
an online framework to address unavoidable workload and
environment variations.

Our online framework, referred to as dynamic reliability
improvement framework (DRIF), solves the problem outlined
above by dynamically and judiciously scaling core frequencies
to increase soft-error reliability. By leveraging the power
and performance features of the big-little type MPSoCs, we
dynamically migrate workload and activate the most power-
efficient cores to execute tasks. Meanwhile, in order to reduce
the computational overhead to check whether the lifetime
reliability caused by a thermal profile is larger than a life-
time reliability constraint, we design a tool, referred to as
LTR-Checker, which is computational efficient to use at
run time.

This paper makes three main contributions.

1) We propose a computationally efficient method to deter-
mine whether a given temporal thermal profile would
respect the corresponding lifetime reliability threshold.

2) By performing extensive experiments on a hardware
platform, we experimentally establish a suitable task
migration guideline allowing tasks executed on most
power efficient cores.

3) We develop an online framework to maximize soft-error
reliability under temperature, real-time, and lifetime reli-
ability constraints by scaling cores’ frequencies and
selecting the most power efficient cores to execute tasks.

We have implemented and validated DRIF on two hardware
boards containing Nvidia’s TK1 [13] chip and TX2 [15] chip,
respectively. Based on the results obtained from running the
MiBench benchmark suite [30], we show that DRIF increases
the no soft error occurring time at least 2 more days than
existing approaches.

The rest of this paper is organized as follows. We review
related work in Section II. Section III introduces the various
system models. We experimentally explore the power features
of HP and LP cores, and establish a task migration guideline
in Section IV. Section V formulates the problem and pro-
vides an overview of our framework. Section VI describes
the LTR-Checker. Section VII describes DRIF in detail.
Sections VIII and IX describe our experimental setup and
results, respectively. Section X concludes this paper.

II. RELATED WORK

As a special type of heterogeneous MPSoCs, the big—
little type MPSoCs use two types of cores: the LP cores

offer high power efficiency while the HP cores provide max-
imum computing performance [2]. This type of MPSoCs
provides flexibility to balance the performance and power, and
facilitates ease of use [31]. Since different execution models
introduce unique constraints, e.g., HP core and LP core in
the same pair cannot work simultaneously, or all HP (all LP)
cores must execute at the same frequency, most resource man-
agement approaches for heterogeneous MPSoCs are not appli-
cable for the big-little architecture [5], [21], [23], [32], [33].
Focusing on the big-little architecture, Liu ef al. [9] proposed
an iterative approach for mapping multithreaded applications
on MPSoCs composing of multiple core types to achieve
high performance and power efficiency. Annamalai ez al. [10]
designed a novel technique to dynamically swap threads
between HP cores and LP cores and change the core frequency
to achieve a high throughput/Watt. Considering the constraints
for HP cores and LP cores, Carroll and Heiser [11] investi-
gated the mechanisms for frequency scaling, and proposed a
technique to reduce energy consumption. Singla et al. [12]
designed an online method to predict and reduce power and
runtime temperature for big-little type MPSoCs. While the
above work considers the specific features of the big-little
architecture, none of them focuses on lifetime reliability or
soft-error reliability.

There exist several efforts that directly aim to increase
soft-error reliability [17], [18], [34], [35] or lifetime
reliability [7], [21], [36], [37]. In order to improve soft-error
reliability, Zhao et al. proposed a method to allocate recover-
ies for tasks [17], [18] while Nahar and Meyer [38] assigned
redundancies to tasks statically. Fan et al. proposed a dynamic
voltage and frequency scaling (DVFS)-based method to reduce
power consumption under soft-error reliability constraint.
Although these methods are effective at improving and ensur-
ing soft-error reliability, they usually reduce lifetime reliability
with a high operating temperature. For periodic tasks running
on an MPSoC, Huang et al. [21] proposed an analytical model
to estimate lifetime reliability of MPSoCs and a task map-
ping and scheduling algorithm to guard against aging effects.
Bolchini et al. [36] dynamically determined the most effec-
tive mapping of tasks to minimize network-on-chip energy
consumption and maximize lifetime reliability. Das et al. [7]
proposed a machine learning-based algorithm to handle inter-
and intra-application variations and reduce peak temperature
and thermal cycling. These methods are designed to increase
lifetime reliability but weaken soft-error reliability.

Our proposed framework considers soft-error reliability and
lifetime reliability, both of which have not typically been
examined together. The work by Das ef al. [24] aims to jointly
improve soft-error reliability and lifetime reliability by map-
ping tasks to all cores and scaling core frequencies. However,
their solution is too computationally intensive to use at run
time. Kapadia and Pasricha [25] proposed a framework to
optimize performance and energy. Although transient and per-
manent faults are considered, their work does not increase
reliability but only focuses on reducing power under lifetime
reliability and soft-error reliability constraints. Zhou et al. [26]
proposed an offline technique to maximize system availability
by allocating replications of tasks and determining the core
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frequency statically. Although these works consider both
lifetime reliability and soft-error reliability, they are offline
approaches and ignore the specific features of big-little type
MPSoCs. In this paper, we focus on big-little type MPSoCs
and propose to maximize soft-error reliability under lifetime
reliability constraint.

III. SYSTEM MODELS

In this section, we present the hardware platform as well as
the task and reliability models used in our framework.

A. Hardware Model

We consider on big-little type MPSoCs with n HP and m
LP cores. We assume that both HP cores and LP cores support
DVES and have multiple frequency levels [13], [15]. A core
dissipates static power when it is idle and consumes additional
active power when it performs operations [33]. Both active and
static power are related to the core’s frequency. Let the uti-
lization of a core in a given time interval |z| be u = (|z,]/]¢),
where |t,| is the amount of time that the core performs oper-
ations [33]. A core’s utilization is commonly used to estimate
real-time performance and soft-error reliability.

We consider two execution models of big-little MPSoCs
in this paper. In the first execution model, referred to as
Hetero-Paired model and represented by Nvidia’ TK1 [13]
and Samsung’s Exynos 5410 [14], HP cores and LP cores are
paired, and the paired HP core and LP core cannot be active
simultaneously. In the second execution model, referred to as
Homo-Grouped model and represented by Nvidia’s TX2 [15]
and NXP’s i.MX8 [16], all cores can work simultaneously,
but HP (LP) cores must execute at the same frequency. There
exist other execution models, where HP and LP cores can
run simultaneously with their own core frequencies, but such
models are not widely supported by MPSoCs.

B. Task Model

We assume that MPSoCs execute independent periodic tasks
with soft deadlines, such as those found in multimedia and
communication applications. A task is associated with a tuple
1, = {d;, !, -}, where d; is the deadline, and eff and e
represent the worst-case execution time when running on an
HP core and LP core, respectively. Generally ef’ < ef‘. Since
all the jobs of the ith task have the same properties, t; also
denotes the jobs of the ith task. Tasks on each core are sched-
uled according to a real-time scheduling policy, such as earliest
deadline first or rate monotonic scheduling [39]. In this paper,
we adopt a mapping approach, where tasks are assigned to
cores at design time to balance the workload of cores [40].
We guarantee the real-time constraint by ensuring that the
utilization of each core is lower than utilization bound for
schedulability [8], [41].

C. Soft-Error Reliability

In this paper, we aim to maximize reliability in the
presence of soft errors caused by transient faults. The soft-error
reliability of a single core in a time interval is the probability

that soft errors occur during the time interval [26]
r(f, t) — e—)»(f)XMXM' (1)

The f is the core frequency, [f| is the length of time interval,
and u is the core’s utilization in this time interval. A(f) is the
average fault rate depending on f [26]

de /)
AF) = ko x 107 o )

Ao is the average faults rate at highest core frequency. fmin
and fiax are the minimum and maximum core frequency and
d (d > 0) is a hardware specific constant that indicates the
sensitivity of fault rates to frequency scaling. This model indi-
cates that improving core frequency is effective in improving
soft-error reliability.

For a big-little type MPSoC with n active HP cores and
m active LP cores, the soft-error reliability in the ith time
interval, #;, is

m

R(t;) —]"[rH (- 6) < TT77° (5. 1) 3)
J

i=1

where erP(ﬁ, t;) and rjI-‘P(fj, t;) are the soft-error reliability of
the jth HP (LP) core in the time interval ;. The aim of this
paper is to maximize soft-error reliability of the MPSoC in
each time interval.

D. Lifetime Reliability

Lifetime reliability, which is typically measured by the
mean-time-to-failure (MTTF), is dependent on multiple wear-
out effects [23]. For the sake of simplicity, we consider
electromigration as the primary source of permanent faults
in this paper. Other device fault mechanisms can be incorpo-
rated using the sum-of-fault rate model [22], [24]. Since the
tasks are executed periodically, the temperature variance with
respect to time will be also periodical after the system stabi-
lization, so we assume the thermal profiles are same in each
task set’s hyperperiod, hp. Based on the thermal profile in a
hyperperiod, the MTTF can be calculated by

o
MTTE = |hp| x Y _ e~ @x4’ (4)
i=0

where |hp| is the length of the hyperperiod and S is the slope
parameter in the Weibull distribution [21]. A is a temperature-
related parameter. If one hyperperiod can be divided by p time
intervals of the same length, and the operating temperature is
constant in each time interval, we calculate A as

S
;T (5)

where [t| and 7; are the length of the time interval and the
temperature at the ith time interval, respectively. «(7;) relates
to the arrival rate of permanent faults and depends on the
hardware and temperature 7; [21].
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Fig. 1. Power consumption of an HP (Denver) core and an LP (ARM) core
under different utilization and frequency levels.

IV. EMPIRICAL STUDY: POWER
CONSUMPTION OF CORES

In this section, we describe the big-little type MPSoCs
consisting of HP and LP cores, especially explore their unique
power features. We first observe that executing tasks on an
LP core may consume more power and energy than executing
on an HP core. We provide a measurement-based method to
quantitatively compare the power and energy consumption of
HP and LP cores. Based on this method and the measurement
results, we establish a suitable task mapping and migration
guideline to migrate tasks between cores and reduce a chip’s
power consumption.

Whereas the primary goal of big—little MPSoCs is to reduce
power consumption by executing a light workload on the LP
cores, an LP core may consume more power than an HP core.
To totally capture the power consumption behavior of big-little
MPSoCs, we have conducted a series of measurement-based
experiments. We measure the power consumption of the HP
core and LP core? in Nvidia’s TX2 [15]. We use FLUKE
AC/DC current clamp meters [43] and National Instruments
USB-6216 data acquisition system [44] to acquire power con-
sumption when cores execute at different core frequencies and
at different utilizations.

To generally evaluate the power features of HP and LP
cores, we propose a measurement-based method to quanti-
tatively compare power consumption of HP and LP cores.
This method measures and compares the power consumption
of cores with different frequencies and utilizations, and the

2Note that TX2 is composed of ARM Cortex A57 cores geared for mul-
tithreading, and Nvidia’ Denver cores for high single-thread performance
with dynamic code optimization [42]. In this measurement, we only con-
sider single-thread applications for TX2, therefore the Denver core is an HP
core and the ARM core is an LP core.

TABLE I
TASK MAPPING AND MIGRATION GUIDELINE

e . Core Frequency (in GHz

Utilization 1 ger 574~ 1267 (y).;ﬁo 0).652 0345
100% TP - - P P P
30% : - P P P P
0% - P P P P P
0% : P P P P P
20% P P P P P P

comparison results can guide the mapping of tasks. A low
utilization means that the workload is light, a core consumes
less active power, and the leakage power may be dominated.
In order to maintain the core’s utilization at a specific level, we
develop a feedback-based tool which can maintain the core’s
utilization at a specific value.

The measured power consumptions are illustrated in Fig. 1.
The results show that for any core frequency, both HP and LP
cores have a higher power consumption with a heavier work-
load. However, LP cores are not always power efficient. The
LP core consumes less power than the HP core only when
the core frequency is low and the workload is light. For other
platforms, such as Nvidia’s TK1 [13], we have similar obser-
vations that the LP core has a lower power than the HP core
only when the utilization and core frequency are low [27].
One possible reason to explain this phenomenon is that the
HP and LP core have different microarchitectures, such as on
TX2. Meanwhile, although HP and LP cores on TK1 have
the same microarchitecture, the transistors in the HP core and
LP core have different threshold voltages. The LP core con-
sumes low leakage power but requires high voltage to operate
at high frequencies. On the contrary, the HP core can work at
high frequency with a low voltage. The measurement results
reveal that in order to reduce power consumption of MPSoCs,
we should keep the workload light in the LP cores, and it is
necessary to migrate tasks between HP and LP cores if cores’
utilizations vary at run time.

Based on the data collected from our extensive experi-
ments, we can establish a suitable task mapping and migration
guideline guiding the selection of cores for executing work-
load to balance the power consumption and performance. This
guideline indicates that whether the LP core or the HP core
consumes less power for each given core frequency and core
utilization. With this guideline, we should map and migrate
tasks to the core consuming less power. As an example, Table I
presents the guideline for Nvidia TX2. In this table, “HP”
(“LP”) indicates the HP (LP) core is more power efficient with
the corresponding core frequency and utilization, so the work-
load should be executing on an HP (LP) core. Note that due
to small variations in ambient temperature, as well as chip
operating voltage and current, the power consumption may
vary slightly even for exactly the same workload. Therefore,
it is insufficient to conclude that a core always consumes less
power when its measured power is lower than that of another
core by a small amount. We treat two measured power values
as the same if their difference is smaller than 0.1 W, which is
the resolution of our sensors. In Table I, “—” indicates that
the difference in power consumption of an HP core and an LP
core is smaller than this threshold. In this case, workload can
run either on an HP core or an LP core.
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In this paper to dynamically improve reliability, we will
use this guideline to migrate tasks between HP and LP cores
at run time to guarantee tasks are always executed on the
most power efficient cores. This task migration reducing power
consumption and temperature allows the cores to execute at a
high core frequency and achieves a high soft-error reliability.

V. PROBLEM FORMULATION AND FRAMEWORK
OVERVIEW

In this section, we first formulate the problem addressed in
this paper and then describe our solution DRIF at high level.

A. Problem Formulation

The problem that we aim to solve is motivated by
applications, such as in-vehicle infotainment systems. For such
systems, tasks are expected to complete before their deadlines,
and both lifetime and soft-error reliability are critical to guar-
antee the safety of human drivers and passengers [29]. At
the same time, the infotainment and other in-vehicle com-
putational subsystems should be power efficient especially
for electric vehicles [45]. Furthermore, the workload in these
systems can vary significantly at run time due to variations in
input data and the environment.

Before formulating the problem, we first introduce two
definitions.

Definition 1: A sampling window (SW) is defined as a time
interval during which the temperature is constant.

Definition 2: A profiling window (PW) is composed of
multiple equal-length SWs.

We determine the core frequencies and cores’ workloads
for each SW, and the PW is used to estimate lifetime reli-
ability. The soft-error reliability, frequency, utilization, and
operating temperature of the jth HP (LP) core at the ith
SW are denoted by r(SW;, HP;) (r(SW;, LP;)), f(SW;, HP))
(f(SWi, LPj)), u(SWi, HPj) (u(SWi, LPj)), and T(SWi, HPj)
(T(SW;, LP))).

Assume that a PW is composed of p SWs and the MPSoC
has n HP cores and m LP cores.? Our objective is to maximize
the system-level soft-error reliability in each PW

p n m
R=[][]]r(sW:i HP)) x [ [r(SWi. LP)) (6)
i=1 \j=1 j=1
T(SW;, HP}) < Ty, YSW;, VHP, (7)
T(SW;, LP}) < Ty, YSW;, VLP; (8)
s.t.4 u(SW;, HP}) < up, YSW;, VHP; ©)
u(SW;, LP}) < g, VSW;, VLP; (10)
MTTF(TP(PW)) > MTTFy,. (11

The first two constraints require the temperature of both
HP and LP cores are less than the thresholds 7, in any SW.
Note that this temperature constraint also limits the power con-
sumption of the system. The third and forth constraints capture
the real-time requirement, where uy, is the upper bound on
utilization to satisfy schedulability. The last constraint requires

3m s equal to n for MPSoCs with Homo-Grouped execution model.

the MTTF resulting from the thermal profile, TP(PW), to be
not less than a threshold MTTFy,. For soft real-time systems,
temporarily violating the real-time and lifetime reliability con-
straints is acceptable, but the temperature constraint must be
satisfied to avoid thermal throttling.

Different execution models of big—little type MPSoCs intro-
duce different execution related constraints. For the Hetero-
Paired execution model, the paired HP core and LP core cannot
work simultaneously. If the jth HP core is paired with the jth
LP core, one of them must be idle, i.e.,

F(SW;, HP}) x f(SW;, LP;) = 0. (12)

We assume that a core whose frequency is 0 is powered-off.
For the Homo-Grouped execution model, all HP (LP) cores
should have the same core frequency, i.e.,

{ JF(SWi, HP)) = f(SW;, HP;11), Vj 13)
J(SWi, LP)) = f(SW;, LPjy1), V). (14)

Our framework is applicable to both execution models and
dynamically improves the soft-error reliability under the
temperature, real-time, and lifetime reliability constraints in
each PW.

In order to solve the formulated problem, there are two main
challenges that we need to overcome: 1) since the history (i.e.,
tasks’ execution times) does not always reflect the future, it is
possible for the constraints to be violated when using history-
based predictions and 2) a highly efficient algorithm is needed
to avoid excessive overhead. We address these challenges by
proposing an online framework to: 1) obtain system runtime
status and 2) dynamically migrate tasks between cores, power
off idle cores, and determine core frequencies based on the
system status in history.

B. Overview of Reliability Improvement Framework

As stated earlier in this paper, to better respond to workload
and environmental changes that are unavoidable in real-time
embedded systems, we aim to develop an online approach to
solve the problem defined in (6)—(11) by taking into consid-
eration of execution models given in (12) or (13)—(14). The
basic idea of our framework, DRIF, is to incrementally solve
the optimization problem by using the history of system states
in the previous PW. The system state includes which cores are
active and each active core’s frequency, operating temperature,
and utilization. Note that our method can be easily applied to
any arbitrary history window size. DRIF consists of three main
components: a schedule generator (SG), which is triggered at
the beginning of each PW, a schedule executor (SE), which is
triggered at the beginning of each SW, and a state collector
(SC), which collects the system state in each SW (see Fig. 2).

DRIF works as follows. In each SW, SC collects and saves
the system state. At the end of each PW, the system state dur-
ing this PW is sent to SG. Based on the state information,
SG then generates a solution, called schedule, which spec-
ifies cores’ workloads and frequencies for each SW in the
next PW (see Section VII-A). The migration guideline given
in Table I is used by SG to migrate tasks between cores to
achieve a lower power consumption as well as operating tem-
perature. In order to reduce the computational cost, SG relies
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—> at each sampling window
-> at each profiling window

DRIF

Schedule Generator (SG) schedule

[ Migration Guideline |
[ LTR-Checker |

| t t
systemstate { ... { State Collector (SC) emperature

system state

Schedule Executor (SE) H—

schedule

HP cores + LP cores |e

Fig. 2. High-level overview of DRIF.

on LTR-Checker to efficiently check whether the lifetime
reliability constraint is satisfied. In each SW, SE either adopts
the schedule generated by SG or modifies the schedule to adapt
to runtime variations (see Section VII-B).

We highlight the effectiveness of DRIF. First of all, DRIF is
adaptive to different types of big-little MPSoCs and different
number of cores and/or pairs of cores. Meanwhile, considering
that the workload in systems may vary at runtime, DRIF peri-
odically obtain the status of each core. Based on the obtained
runtime status, DRIF determines the most appropriate cores
to execute tasks satisfying the real-time, lifetime reliability
and operating temperature constraints. In order to reduce the
computational overhead, we propose heuristics to periodically
migrate tasks and tune core frequencies in linear time. Note
that the execution order of tasks in each core can be deter-
mined by some existing scheduling policies. DRIF is adaptive
to and can work on any scheduling policy, such as rate mono-
tonic and earliest deadline first [39]. The details of our DRIF
are elaborated in the next section.

VI. LTR-CHECKER: TOOL TO CHECK LIFETIME
RELIABILITY CONSTRAINT

In this section, we design a tool LTR-Checker, which
computational efficiently checks whether the lifetime reli-
ability caused by a given thermal profile in a task set’s
hyperperiod is larger than a prespecified constraint, MTTFy,.
Calculating MTTF by using (4) is extremely time consuming
and may not be practical to use at runtime. Hence, the tar-
get of LTR-Checker is reducing the runtime computational
overhead by allowing some calculations are operated offline.

We first introduce a concept called super hyperperiod, sp,
which is a set of multiple adjacent hyperperiods. Let the length
of a super hyperperiod be |sp|, and |sp| = |hp| x k, where k is
a positive integer. Since one super hyperperiod is composed of
multiple adjacent hyperperiods and thermal profiles are same
in each super hyperperiod, the lifetime reliability can also be
expressed as

o

. * ﬁ

MTTF = [sp| x Y _ e~ (A7)
i=0

5)

where
kxp

. |¢]
A= Z a(Ty)

i=1

(16)

For a given thermal profile in the hyperperiod, LTR-Checker
checks whether the corresponding MTTF is larger than
MTTFy,. LTR-Checker reduces the online computational
overhead by operating the accumulation offline and only
calculating A* online.

The aim of the offline part in LTR-Checker is to find
a threshold for A*, referred to as At*h, such that if A* < At*h,
the corresponding MTTF is larger than MTTFy,. We first arbi-
trarily determine the length of super hyperperiod |sp|. Since
|hp| is usually in seconds and MTTFy, is in years, setting |sp|
to months can satisfy that |sp| can be evenly divided by any
possible |hp|. After determining the value of [sp|, we can find
the threshold A} such that

> B
Ispl x Y e~ (AW = MTTFy, (17)
i=0
If the A* caused by a thermal profile is smaller than Aﬁv the
corresponding system’s MTTF is larger than MTTFy,.

The online part of LTR-Checker calculates A* based on
the thermal profile in a hyperperiod. With the determined |sp]|,
we first find the relationship between A [in (5)] and A*, which
is described in Lemma 1.

Lemma I: If one super hyperperiod is composed of k
hyperperiods, i.e., [sp| = k x |hp|, then A* = A X k.

Proof: Since thermal profiles are same in each hyper-
period, each hyperperiod’s ith time interval has the same

temperature, i.e., T; = Tiyp = --- = Tiyxp. Furthermore,
a(Ty) = a(Tiyp) = - -+ = o(Titkp). Hence
kp I p |
Ar=)" =kxy — =Axk (18)
—~ a(T}) — o(T;)
i=1 i=1
|

Since |sp| is arbitrarily determined offline and |hp| is con-
stant for a given task set, we only need to calculate A in
order to obtain A*. A can be obtained by using (5), and its
computational overhead only depends on the value of |hp|,
which is much smaller than |sp| and MTTFg,. Comparing to
obtain MTTF directly by using (4) and (5), the online oper-
ation of LTR-Checker is only obtaining A by using (5).
Hence, LTR-Checker dramatically reduces the online com-
putational overhead and it can be easily used even when the
computational resources are limited. In DRIF, we require the
length of the PW is multiple of the length of the task set’s
hyperperiod, and the SG utilizes the LTR-Checker to deter-
mine whether a given operating temperature can guarantee the
lifetime reliability constraint.

VII. DESIGN OF RELIABILITY IMPROVEMENT
FRAMEWORK

We provide the details of our framework DRIF to improve
the soft-error reliability under the temperature, real-time, and
lifetime reliability constraints.
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Algorithm 1 SG for Homo-Grouped MPSoCs

Algorithm 2 SG for Hetero-Paired MPSoCs

1: hf (If): the cores with high (low) core frequencies

2: I(If, SW;): frequency level of If cores at sampling window SW;
3: TPj: thermal profile in the q’h profiling window

4: procedure GENERATORHOG(Sc(PW)), St(PW)))

5 if MTTF(TP;) < MTTF;, then

6: for each sampling window SW; do

7: if u(l(hf, SW;) — 1) < uy, then

8: I(hf, SW;) = I(hf, SW;) — 1

9: else if u(/(hf, SW;) — 1) < uy, then

10: Idf, Swy) = Idf, Swy) — 1
11: end if

12: end for

13: else

14: for each sampling window SW; do
15: if T(l(f, SW;) + 1) < Ty, then
16: I(H,SW;) =I(H,SW;) + 1
17: end if

18: end for

19: end if

20: for each sampling window SW; do

21: Sc*(SW;) <—migrate workload based on TABLE I

22: end for
23: Sc(PWjy1) < {Sc*(SW1), ..., Sc*(SWp)}
24: end procedure

A. Schedule Generator

The goal of SG is to generate a schedule, i.e., each core’s
workload and frequency, for the next PW based on the system
status in the current PW. Although it is possible to use an
optimization solver to generate an optimal schedule for the
problem defined in (6)—(11), such a solver would be too time
consuming for online use. Instead, we design a computational
effective heuristic migrating tasks and dynamically scaling
core frequencies.

As pointed out earlier, we assume that the workload has
already been mapped and the workload is balanced between
cores. Considering the runtime variations of workload, SG
determines the frequencies of all cores to maximize soft-error
reliability and meet all constraints in (7)-(11) by consider-
ing the execution models of big-little MPSoCs given in (12)
or (13), (14).

Before we present the algorithm in SG, we first introduce
some concepts. System state, St(PW;), denotes the state in the
PW PW;j, which includes the utilization, frequency, and oper-
ating temperature of each core in the SWs of PW;. St(SW;),
a subset of St(PW;), represents the state in the SW SW;.
System schedule, Sc(PW;), specifies each core’s workload and
frequency in all SWs in PW;. Similarly, Sc(SW;) represents
schedule in the SW SW;.

SG is invoked at the end of each PW and takes St(PWj)
and Sc(PWj) as inputs. SG generates a schedule for Homo-
Grouped MPSoCs (in Algorithm 1) or for Hetero-Paired
MPSoCs (in Algorithm 2), respectively. We provide the details
to generate a schedule for Homo-Grouped MPSoCs first. The
idea is that we check whether the lifetime reliability constraint
is satisfied, and try to increase core frequencies if the lifetime
reliability is larger than its constraint, otherwise, reduce core
frequencies (in lines 5-19). Since all HP (LP) cores run at
the same core frequency, we use hl (If) to represent cores

1: pg: the k™ active core
2: I(px, SW;): HP’s frequency level at sampling window SW;
3: TPj: thermal profile in the q’h profiling window
4: procedure GENERATORHEP(Sc(PWj), St(PWj))
5: if MTTF(TP;) < MTTF; then
6: for each sampling window SW; do
7: Sort core with their core frequencies
8: for p; (starting form the core with high frequency)
do
9: if u(l(og, SW;) — 1) < uyy, then
10: ok, SW) = l(p, SW;) — 1
11: break
12: end if
13: end for
14: end for
15: else
16: for each sampling window SW; do
17: Sort core with their core frequencies
18: for p; (starting form the core with low frequency) do
19: if T(I(or, SW;) +1) < Ty, then
20: 1(og, SWy) = l(px, SW;) + 1
21: break
22: end if
23: end for
24: end for
25: end if
26: for each sampling window SW; do
27: Sc*(SW;) <migrate workload based on TABLE I

28: end for
29: Sc(PWji1) < {Sc*(SWy), ..., Sc* (SWp)}
30: end procedure

running at high (low) core frequencies. For each SW, if the
system status in the previous PW, St(PW;), violates the life-
time reliability constraint, SG reduces the core frequencies of
cores running at high frequency if doing so does not vio-
late the real-time constraint (in lines 7 and 8). Otherwise,
reduce the core frequencies of cores with low core frequency
if not violate the real-time constraint (in lines 9 and 10).
Meanwhile, if St(PW;) meets the lifetime reliability constraint,
SG increases frequencies for cores with low core frequency
to improve soft-error reliability under the temperature con-
straint (in lines 14-18). After determining core frequencies,
SG migrates tasks between cores to reduce the power con-
sumption and temperature (in lines 20-22). We provide the
details of task migration in Algorithm 3. After determining
core frequencies and migrating tasks between cores, the sched-
ule for the next PW, Sc(PW;, 1), is generated (in line 23). The
computational complexity to determine the core frequencies
for Homo-Grouped MPSoCs is O(p), where p is the number
of SWs in a PW.

SG generates a schedule for Hetero-Paired MPSoCs in
Algorithm 2. If the system status in the previous PW, St(PW;),
violates the lifetime reliability constraint, SG tries to reduce
the core frequency for the core which executes at the highest
frequency if doing so does not violate the real-time constraint
(in lines 6-14). On the contrary, if St(PW;) satisfies the life-
time reliability constraint, SG increases the core frequency
of cores with low core frequency under the temperature con-
straint (in lines 16-24). Similar to Homo-Grouped MPSoCs,
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Algorithm 3 Migrate Workload

1: Ty(pj): the type of pj, its HP or LP

2: u(pj, SWj): pj’s utilization at SW;

3: u(pj, W): pj’s utilization if executing workload W

4: ek" : the execution time of task t; on core pp

5: procedure MIGRATE(Sc(SW;), St(SW;), TABLE I)

6: if Homo-Grouped MPSoCs then

7: for each core (p;) do

8: 7 the task on p; with shortest execution time
9: pp: the lowest utilization core at different type of p;
10: Search TABLE I with u(p;, SW;) and f(p;, SW;)
11: T <« the type of the most power efficient core
12: while Ty(oj) # 7 do

Pp

13: if u(pp) + %= < uy, then

14: Migrate 7 to core pp

15: end if

16: T <« search TABLE I

17: end while

18: end for

19: end if
20: if Hetero-Paired MPSoCs then
21: for each active core p; do
22: T < search TABLE I with u(p;) and f(p;)
23: W: the workload on p;
24: Pp: pj’s paired core
25: if Ty(oj) # T and uw(W, pp) < uy, then
26: Migrate all workload to pp paired core
27: end if
28: end for
29: end if
30: for each core p; do
31: if p;’s workload is empty then
32: Power off p;
33: end if

34: end for
35: end procedure

SG migrates tasks (in lines 26-28) and finally generates a new
schedule Sc(PW1) (in line 29). The computational complex-
ity of Algorithm 2 is O(p x (n + m) x log(n + m)), where p
is the number of SWs in a PW, and n and m are the number
of HP cores and LP cores, respectively.

We provide the details on how to migrate tasks and select
power efficient cores to execute tasks are in Algorithm 3. This
task migration algorithm is called by Algorithms 1 and 2 at
each SW, and its inputs are the migration guideline given
in Table I, the system status, and schedule at each SW. The
key idea is that we search the migration guideline with each
core’s utilization and frequency, and migrate tasks based on
the search results. For the Homo-Grouped MPSoCs, for a core,
pj, if the migration guideline indicates we should tune p;’s
utilization to save power, we migrate the task with shortest
execution to an LP or HP core (in lines 6-19). We itera-
tively migrate tasks between cores until the results of search
migration guideline match the types of all cores. For the
Hetero-Paired MPSoCs, the paired HP and LP cores work
exclusively. Hence, if tasks are ready optimally mapped to
each pair initially, we only need to select the HP or LP
core to use for each pair. If the searching results from the
task migration guideline do not match the type of the active
core p;, migrate all tasks on p; to its paired core if doing so

does not violate the real-time constraint (in lines 20-29). For
both Homo-Grouped and Hetero-Paired MPSoCs, if a core’s
workload is empty, power off this core to save energy (in
lines 30-34). For the Homo-Grouped MPSoCs, the computa-
tional complexity of Algorithm 3 is O(g¢ x (m + n)), where
@, m, n are the number of tasks, HP cores, and LP cores,
respectively. For Hetero-Paired MPSoCs, the complexity is
O(m —+ n).

B. Schedule Executor

The SE, determines the active cores’ frequencies at the
beginning of each SW. A straightforward approach is to sim-
ply follow the schedule generated by SG. However, since the
schedule Sc(PWj4) is generated based on the system status
St(PW;), but the utilization in the PW PW; can be different
from that in the PW; 1, Sc(PW;1) may actually violate some
or all of the constraints during run time. For soft real-time
systems, it is acceptable to temporarily violate the real-time
and lifetime reliability constraints in (9)—(11) as they can be
compensated in the next PW. However, violating the temper-
ature constraint may either cause timing faults or unexpected
throttling. Therefore, SE should be designed to avoid the
occurrence of such a case.

SE adjusts core frequency for each core. At the beginning of
each SW, SE receives the initial temperatures from SC, which
is the temperature of the previous SW, and gets the cores’
frequencies from Sc(PWjy1). We can statically design a table
that for all possible initial temperatures and core frequencies.
This table indicates the worst-case temperature in an SW by
assuming the core utilization is 100%. SE checks whether the
worst-case temperature can remain below the thermal thresh-
old. If not, we reduce the core frequency one level lower than
that specified in the schedule Sc(PW;,1). Since we establish
such a table statically, the computational complexity of SE
is 0(1).

VIII. EXPERIMENTAL SETUP

To evaluate the proposed DRIF, we conducted experiments
to compare with two representative approaches. In this section,
we present the platforms, workloads, and the frameworks used
for comparison in our experiments.

A. Comparison Targets

We compared the performance of DRIF to two representa-
tive frameworks. The multiobjective optimization of system
reliability (MOO) finds the Pareto-optimization of soft-error
reliability and lifetime reliability by using a genetic algo-
rithm [24]. Since the genetic algorithm-based solver is too
costly to be used at runtime, core frequencies are determined
offline and cannot be changed online. In order to evaluate the
benefits of migrating tasks between cores, we compare DRIF
with a framework, called simplified DRIF (S-DRIF), which
scales core frequencies as in DRIF, but does not migrate tasks
between cores.

Three metrics are considered in the comparison. The prob-
ability of failures (PoF) due to soft errors quantifies the
soft-error reliability. The PoF is defined as 1 — R, where R
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TABLE 11
TASKS’ EXECUTION TIMES ON TK1

Tasks Execution time

HP ARM Core | LP ARM Core
gsort 145 ms 145 ms
blowfish 150 ms 152 ms
cre32 195 ms 196 ms

is the system-level soft-error reliability. An approach achiev-
ing a lower PoF is the same as achieving a higher soft-error
reliability. We used the percentage of feasible solutions for
real-time constraint (FS-RT) to describe the capability of sat-
isfying real-time constraint. In experiments, the jobs of each
task are periodically released. We checked which job meet-
ing its deadline and the percentage of FS-RT is quantified as
the ratio of the number of jobs meeting its deadline over the
total number of all jobs. Similarly, the percentage of feasible
solution for lifetime reliability (FS-LTR) constraint describes
the capability of satisfying lifetime reliability. In experiments,
we utilized LTR-Checker to check whether the lifetime reli-
ability is satisfied at each PW. The percentage of FS-LTR is
quantified as the ratio of the number of PWs achieving a higher
lifetime reliability than the lifetime reliability constraint over
the total number of PWs.

B. Experimental Platforms

The experiments are conducted on two boards containing
Nvidia’s TK1 [13] and TX2 [15] chip, respectively. The TK1
chip provides four HP cores and one LP core, but the HP cores
and the LP core cannot work simultaneously. Hence, the TK1
chip is a Hetero-Paired type MPSoC, and it only provides one
HP-LP core pair. In our experiments, the workload for TK1
is designed to be light enough to fit on one HP or LP core.
The TX2 chip includes two HP cores (with Nvidia’s Denver
microarchitecture [42]) and four LP cores (with ARM Cortex
A57 microarchitecture). Hence, TX2 chip is a Homo-Grouped
type MPSoC. Note that we only consider single-thread tasks,
so the Denver core has a better performance than the ARM
core [42].

We obtained the chip’s operating temperature by reading
their integrated thermal sensors. Note that although TK1 and
TX2 only report one CPU temperature, it is enough to show
that DRIF can achieve a lower temperature and guarantee the
temperature constraint. For both HP and LP cores in TKI,
we use the core frequencies 1.092 GHz, 0.96 GHz, 0.828 GHz,
0.696 GHz, and 0.564 GHz. For TX2, we select the core
frequencies 1.881 GHz, 1.574 GHz, 1.267 GHz, 0.960 GHz,
0.652 GHz, and 0.345 GHz.

C. Workloads

We now discuss the tasks set for experiments on TK1 and
TX2. Considering the low performance of cores in TKI1, we
chose three tasks from Mibench benchmark suite [30] and
measured their execution times when the core’s frequency is
1.092 GHz (see Table II). TK1 only provides one 1 HP-LP
core pair, so tasks execute either on the HP core or the LP
core. For experiments on TX2, we used two ARM cores and
one Denver core to execute eight tasks from Mibench [30]. We

TABLE III
TASKS’ EXECUTION TIMES ON TX2

Execution time

Tasks Denver Core ARM Core
cjpeg 24 ms 33 ms

gsort 49 ms 69 ms
dijkstra 47 ms 64 ms
blowfish 26 ms 52 ms

susan 52 ms 78 ms
stringsearch | 2ms 3ms

cre32 30 ms 75 ms
patricia 12 ms 16 ms

TABLE IV

TASK ALLOCATION FOR TX2

Tasks Mapping to
cjpeg ARM Core 0
gsort ARM Core 0
dijkstra ARM Core 1
blowfish ARM Core 1

Denver Core 0
Denver Core 0
Denver Core 0
Denver Core 0

susan
stringsearch
crc32
patricia

first measured the execution times of the tasks on an ARM and
Denver core with the highest core frequency (see Table III).
Based on the measurements, we mapped these tasks to ARM
and Denver cores and balanced the workloads of cores (see
Table IV). Note that although TX2 provides four ARM cores
and two Denver cores, we only used one Denver core and two
ARM cores because the workload is light. If allocating the
selected tasks to three ARM cores and/or two Denver cores,
the workload of each core is such light that a core can always
execute at the highest frequency. Meanwhile, we aim at inde-
pendent tasks and the soft-error reliability achieved by DRIF
is related to a cores utilization but independent to the number
of cores. Hence, executing tasks on two ARM cores and one
Denver core is sufficient to validate the capability of DRIF in
improving soft-error reliability.

We designed two task groups. In the first group, tasks are
frame-based and share the same period and deadline. For
experiments on TX2, tasks’ periods and deadlines are 150,
200, 250, and 300 ms, and for experiments on TK1, they are
700, 800, 900, and 1000 ms. In the second group, a task’s
deadline and period are set to be the same but random in the
ranges between 150-200ms, 200-250ms, 250-300ms for
TX2, and for TK1, the ranges are 700-800 ms, 800-900 ms,
and 900-1000 ms. We used the deadline-monotonic schedul-
ing policy to schedule tasks, where a task with shorter deadline
is assigned a higher priority and executed earlier [39]. Also,
change from tasks to jobs to be consistent. Such setups ensure
that tasks are schedulable, and represent multiple workloads
ranging from heavy to light.

IX. EXPERIMENTAL RESULTS

In this section, we examine the performance of the proposed
DRIF compared to the S-DRIF and MOO.

A. Experiments on TKI1 Chip

We first validated our approach on a TK1 chip with Hetero-
Paired execution model. We compared the proposed DRIF

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2022 at 16:56:44 UTC from IEEE Xplore. Restrictions apply.



MA et al.: ONLINE RESOURCE MANAGEMENT FOR IMPROVING RELIABILITY OF REAL-TIME SYSTEMS ON “BIG-LITTLE” TYPE MPSoCs

ODRIF OS-DRIF oMOO
1000
; 100
&
]
L 10
1
700 800 900 1000
Period (ms)
ODRIF OS-DRIF oMOO ODRIF OS-DRIF oMO00
_ 120 _ 110
< 100 <100

%
S
©

0

%

0
0

N
S
=

60
50

Percentage of FS-RT
IS
S

Al

700 800 900 1000
Period (ms)

Percentage of FS-LTR

150 200 250 300

Period (ms)
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Fig. 4. PoFs due to soft errors and percentage of feasible solutions for a
general periodic task set running on TKI.

with MOO and S-DRIF to determine whether DRIF can
improve soft-error reliability without violating temperature,
real-time, and lifetime reliability constraints.

Fig. 3 shows the experimental results when tasks are frame-
based. DRIF and S-DRIF have similar performance when the
workload is heavy, but DRIF achieves a lower PoF than MOO
and S-DRIF in all the cases. The PoF of DRIF is 97.89%,
95.64%, 37.9%, and 18.89% of S-DRIF when the period is
700, 800, 900, and 1000 ms, respectively. This reduced PoF
guarantees the system can work without soft errors at least
2 min more than S-DRIF, and up to 10h. Meanwhile, since
our task migration considers the real-time and lifetime reli-
ability constraints, the percentages of FS-RT and FS-LTR of
DRIF, S-DRIF and MOO are close, especially when the work-
load is light. For the soft-error reliability, the PoF of DRIF is
only 29.18%, 51.21%, 16.29%, and 15.04% of MOO. It means
that the system can work successfully without soft errors 1.1,
0.4, 12.7, and 100.8 h more than MOO, respectively.

We extended the experiment to validate DRIF for a general
periodic task set, where tasks’ periods and deadlines are equal
but randomly generated in different ranges (see Fig. 4). The
average PoF of DRIF is 81% of S-DRIF and 51% of MOO,
which translates to DRIF allowing the system to successfully
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Fig. 5. PoFs due to soft errors and percentage of feasible solutions for a

frame-based task set running on TX2.

work for 17 min more than S-DRIF on average, and 63 min
more than MOO on average. Comparing to the results in Fig. 3,
DRIF provides less benefits when tasks have different periods.
The reason is that the workload in each SW varies dramati-
cally, and DRIF guarantees the lifetime reliability constraint
with a low core frequencies, which limits the performance in
improving soft-error reliability. However, DRIF is still a better
approach than S-DRIF and MOO, and achieves a lower PoF.

We measured the time and power consumption of DRIF on
an ARM core. DRIF consumes less than 1 ms to complete
and we cannot observe power changes when operating DRIF
because the resolution of our power measurement tool is about
0.1 W. Based on these measurements, we claim that the time
and power consumption of DRIF on TKI1 can be ignored.

We also compared DRIF with a brute force search-based
approach which finds the optimal solution at each SW. This
approach, although can guarantee the highest soft-error reli-
ability at each SW, is computation intensive and cannot be
used at the runtime. The execution time of this approach is
about 30 s if running on the TK1’s HP core. Compared to this
approach, the computation time of DRIF is less than 1 ms even
if one PW has 100 SWs. Since both approaches determine
core frequencies for each PW, which is typically in minutes,
the brute force search may not be a good choice to use at
runtime.

Although the brute force search-based approach can find
optimal solutions at each SW, it is too computational compli-
cated to apply at runtime. On the contrary, DRIF determines
the core frequencies at each PW by tuning the operating core
frequencies one level at one time. Our experiments show that
DRIF can find the best solution starting from the fifth PW.
Since the length of a PW is in minutes, not finding the best
solution in the first five PWs (less than 10 min) has negligible
effect on lifetime reliability and soft-error reliability.

B. Experiments on TX2 Chip

We conducted experiments on TX2 chip to evaluate the
performance of DRIF in the platform with Homo-Grouped
execution model. On this platform, DRIF scales core
frequencies and migrates tasks to increase soft-error
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reliability under temperature, real-time and lifetime reliability
constraints.

Similar to the experiments on TK1, we validated DRIF
for: 1) a frame-based task set (see Fig. 5) and 2) a general
periodic task set (see Fig. 6). For the frame-based task set,
the PoF of DRIF is 47.25%, 81.95%, 0.1%, and 0.003% of
S-DRIF when the period is 150, 200, 250, and 300 ms,
respectively. This low PoF guarantees the system can suc-
cessfully work 158h more than S-DRIF on average and
up to 24 days. Thanks to the dynamic task migration, DRIF
dynamically selects the most appropriate cores to execute
tasks. DRIF can also dynamically power off any idle cores
to reduce power consumption and allow active cores run-
ning at high core frequency. Hence, the benefits of DRIF are
clearer than the experiments on TK1 in Fig. 3. Comparing
to MOO, DRIF achieves a lower PoF in all cases, and
leads to a system that can successfully work about 6.6 days
more than MOO on average and up to 26days. In terms of
satisfying real-time and lifetime reliability constraints, both
DRIF and S-DRIF achieve a similar percentage of FS-
RT and FS-LTR to MOO especially when the workload is
light.

Fig. 6 shows the performance of DRIF when the workload
is a general periodic task set. The PoF of DRIF is about
98%, 86%, and 0.001% of S-DRIF when periods of tasks
in ranges 150-200 ms, 200-250 ms, and 250 -300 ms, respec-
tively. It means that DRIF guarantees the system successfully
work without soft errors 7.6days more than S-DRIF on
average, and up to 22.8 days. Meanwhile, the soft-error relia-
bility improvement of DRIF over MOO is similar to that over
S-DRIF. Comparing to MOO, DRIF increases the system’s
successful execution time about 7.6 days on average, and up
to 22.8 days. Finally, the execution time of DRIF is less than
1 ms either on the ARM core or the Denver core. The power
consumption of DRIF on TX2, similar as on TKI, is also
too small to be observed. In summary, the above experiments
confirm that our approach DRIF has a better performance in
improving soft-error reliability in all cases, especially when
the workload is light.

X. CONCLUSION

Focusing on two execution models of big-little type
MPSoCs, we proposed a DRIF to maximize soft-error
reliability under temperature, real-time, and lifetime reliabil-
ity constraints. We designed a computational efficient tool to
check whether the lifetime reliability caused by a thermal pro-
file is larger than a prespecified constraint. In order to reduce
power consumption, we empirically studied the power features
of the HP and LP cores and established a task migration guide-
line to indicate the most appropriate and power efficient core
to execute tasks. Based on these contributions, our framework
dynamically migrates tasks between cores and adjusts the core
frequencies to satisfy all constraints. The results on chips sup-
porting different execution models show that our approach is
effective in increasing soft-error reliability under constraints
compared to other representative approaches. As future work,
we plan to extend our approach to more general task models
and consider MPSoCs with GPU.
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