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Computationally eਖ਼cient, camera-based, real-time human position tracking on low-end, edge devices would
enable numerous applications, including privacy-preserving video redaction and analysis. Unfortunately,
running most deep neural network based models in real time requires expensive hardware, making widespread
deployment diਖ਼cult, particularly on edge devices. Shiॏing inference to the cloud increases the a॒ack surface,
generally requiring that users trust cloud servers, and increases demands on wireless networks in deployment
venues. Our goal is to determine the extreme to which edge video redaction eਖ਼ciency can be taken, with a
particular interest in enabling, for the ੗rst time, low-cost, real-time deployments with inexpensive commodity
hardware. We present an eਖ਼cient solution to the human detection (and redaction) problem based on singular
value decomposition (SVD) background removal and describe a novel time-eਖ਼cient and energy-eਖ਼cient
sensor-fusion algorithm that leverages human position information in real-world coordinates to enable real-
time visual human detection and tracking at the edge. य़ese ideas are evaluated using a prototype built from
(resource-constrained) commodity hardware representative of commonly used low-cost IoT edge devices.
य़e speed and accuracy of the system are evaluated via a deployment study, and it is compared with the
most advanced relevant alternatives. य़e multi-modal system operates at a frame rate ranging from 20 FPS to
60 FPS, achieves a wIoU 0.3 score (see Section 5.4) ranging from 0.71 to 0.79, and successfully performs complete
redaction of privacy-sensitive pixels with a success rate of 91%–99% in human head regions and 77%–91%
in upper body regions, depending on the number of individuals present in the ੗eld of view. य़ese results
demonstrate that it is possible to achieve adequate eਖ਼ciency to enable real-time redaction on inexpensive,
commodity edge hardware.
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1 Introduction
Privacy is at risk of vanishing as Internet-of-ࢊings (IoT) sensors proliferate. For example,
shopping malls are peppered with cameras, which bring security and market research bene੗ts, but
undermine privacy. Malicious actors may use captured video to detect what someone is buying or
who they are with and use this information to prioritize targets for blackmail or theॏ. In theory, one
could use remote (cloud) servers for video redaction. However, this requires third-party involvement,
and generally involves streaming video data through potentially insecure subsystems, increasing
the a॒ack surface. On-device redaction mitigates this problem, decreasing the propagation of
sensitive information and reducing the a॒ack surface.

Existing state-of-the-art redaction techniques use computationally intensive, data-driven, deep-
learning-based approaches that do not support real-time execution on resource-constrained, inex-
pensive commodity IoT edge devices. Simply put, using existing techniques would require venues to
purchase numerous expensive, high-performance devices, increasing the economic barrier to using
privacy-preserving approaches to video analysis. For edge redaction to be scalable, it should be
eਖ਼cient enough to run on the low-cost edge devices that numerically dominate the IoT marketplace.
Our goal is to determine the extreme to which e॓ciency can be taken for privacy

preserving video redaction on inexpensive, commodity edge devices, while preserving
high accuracy. Motivated by this problem, we design an approach for eਖ਼cient redaction on
inexpensive, commodity hardware and test it in multiple indoor scenarios. य़e resulting algorithms
dramatically increase the frame rates practical on inexpensive, commodity edge hardware relative
to prior approaches, making real-time execution practical, i.e., on-line processing is fast enough
to match the data capture rate. Figure 1 illustrates the capabilities of the proposed system, called
E॓cient Redaction Automation System at the Edge (ERASE). ERASE takes the video stream
and human location data as inputs, estimates and redacts privacy-related regions, and outputs the
redacted video. It enables real-time, e.g., at least 10 FPS throughput, privacy-aware redaction on
inexpensive (≤ 50USD) commodity hardware.

Contributions
During the design process, we were motivated by a key constraint: existing neural network models
capable of solving the redaction problem do not support real-time execution on inexpensive,
commodity edge devices. To address this problem, we developed an eਖ਼cient redaction algorithm
based on the privacy protection problem formulation that fuses video and location data from
inexpensive sensors already present in many smartphones and expected to become standard in
the future, enabling eਖ਼cient human detection and redaction. य़is article makes the following
contributions.

(1) A novel problem formulation and constrained privacy-aware optimization objective. य़is
formulation enables the use of video and location data for eਖ਼cient, iterative redaction region
optimization.

(2) An eਖ਼cient gradient-based privacy-aware redaction region optimization algorithm informed
by location data and singular value decomposition (SVD) of video data. य़is algorithm is
dramatically more eਖ਼cient than existing deep neural network based redaction approaches,
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Fig. 1. The proposed system, ERASE, enables real-time visual tracking of people using only inexpensive,
commodity IoT devices, and enables the redaction of privacy-relevant data before it leaves the capture device.

enabling, for the ੗rst time, real-time operation on inexpensive, commodity edge devices
without accelerators or GPUs.

(3) य़e design and implementation of the above algorithm on a hardware-soॏware system
that fuses video data and human position traces obtained from ultra-wideband (UWB)
localization hardware using an ARM Cortex A72 processor.

(4) An eਖ਼cient approach to mitigate fading, a persistent problem in prior SVD-based background
subtraction methods, where stationary target objects are misclassi੗ed as background and,
consequently, vanish from the extracted foreground (see Section 3.5).य़is approach integrates
UWB-based location information with video information, enabling SVD-based video analysis
to be used on resource-constrained edge devices when redacted people (or objects) are
sometimes stationary.

(5) A new dataset that provides, for the ੗rst time, time-synchronized video and UWB data with
various numbers of people in the ੗eld of view, under a range of conditions and scenarios.

We evaluated the system embodying these contributions, which is able to perform localization
and redaction on (inexpensive) ARM Cortex A72 hardware at over 60 FPS for a single individual,
scaling linearly to 20 FPS for ੗ve individuals. Previously published redaction approaches measured
on the same hardware had a maximum frame rate of 6.26 FPS. Depending on the number of
individuals present in the ੗eld of view, ERASE successfully performs complete redaction of privacy-
sensitive pixels with a success rate of 91%–99% in human head regions and 77%–91% in upper
body regions and achieves accuracy ranging from 0.71 to 0.79 in weighted intersection over
union (wIoU), a measure particularly appropriate for redaction system accuracy, which is de੗ned
in Section 5.4. य़ese results demonstrate that it is possible to reach adequate eਖ਼ciency to enable
real-time redaction on inexpensive, commodity edge hardware.

2 Related Work
य़is section describes related work on on-device human detection and tracking methods for privacy
protection. To the best of our knowledge, our work is the ੗rst to enable eਖ਼cient vision-based
real-time human tracking enabling low-latency, privacy-preserving video redaction on low-cost,
commodity edge devices.

Many existing works [13, 15, 20] focus on improving accuracy of UWB indoor localization
systems by fusing traces estimated by a vision-based human detection algorithm and UWB system.
य़ey use deep neural networks for human detection/pose estimation to track human positions in
the 3-D real-world coordinates by projecting human foot locations from the pixel coordinates (the
location of pixels in an image) to the real-world coordinates (the location in the prede੗ned 3-D
physical coordinates). Finally, they fuse the video traces and UWB traces to improve localization
accuracy in 3-D space. In contrast to such systems, our ERASE determines a region (bounding box)
in the 2-D camera visual ੗eld associated with each person. Most of the algorithmic complexity and
contribution of our work stems from determining the best boundaries between privacy-relevant
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pixels and privacy-neutral pixels in this visual ੗eld. Details of our fusion algorithm are described
in Sections 4.3 and 4.4.

य़ere are existing works exploring “close-to-data-source” privacy-preserving camera systems,
where privacy-relevant pixels are removed before data leave the devices.

PrivacyLens [6] fuses thermal sensing data with RGB camera data using a Jetson Nano embedded
GPU or a Titan RTX desktop GPU with the goal of improving redaction accuracy, thereby reducing
leakage of privacy-relevant information relative to classical RGB-based approaches. य़eir approach
also improves robustness to changes in lighting conditions compared to conventional RGB ap-
proaches. य़eir focus on thermal camera data and computationally intensive models has several
implications. य़e resulting redacted images can still capture body shape and pose information
quite accurately, enabling high inference accuracy on redacted video in several applications, e.g., in
exercise repetition counting and fall detection. However, the thermal camera increases the camera
node cost by 164USD and their approach to redaction is relatively computationally intensive,
requiring a 100 USD embedded GPU to achieve a frame rate of 8 FPS. य़e frame rate is also limited
by the 8 FPS legal restriction on thermal cameras. In contrast, our focus is on achieving high enough
eਖ਼ciency to enable high frame rates (over 20 FPS) on commodity edge hardware and requires only a
commodity RGB camera and inexpensive (less than 60USD) UWB localization system. Only 4 UWB
anchors are needed to form an indoor localization system regardless of the number of cameras
deployed in the venue, with the system capable of supporting all camera nodes. In summary, the
PrivacyLens paper shows the implications of using thermal sensing data for video redaction and
our paper shows the implications of pushing redaction eਖ਼ciency to the extreme to enable high
frame rate implementation using inexpensive commodity hardware. As a result, our paper focuses
on detailed algorithm design. Both systems are evaluated on measured data in several real-world
use cases.

Opt-In Camera describes a system in which UWB and RGB camera data are fused to enable
some individuals to express consent to video capture by carrying tags. य़is work is currently under
review, but a six-page pre-print is accessible [7]. It uses the YOLOv9-Wholebody-with-Wheelchair
object tracking package and does not focus on eਖ਼ciency. A 1,499 USD MacBook Pro with M3 Max
is used for evaluation, with which video can be processed at 10 FPS. In contrast, our work focuses
on eਖ਼ciency to enable high frame rates on inexpensive commodity edge hardware. य़is requires
much more a॒ention to low-level algorithm design details.

Our system, ERASE, fuses UWB-based location and video data to enable eਖ਼cient, accurate, and
robust human tracking. य़is supports (economic) scaling of video systems capable of redaction at
the edge. Figure 2 contains the ੘ow chart for ERASE and illustrates the results it produces during
each stage of processing. ERASE supports various redaction modes. Our experiments show that
the multi-modal system operates at a frame rate between 20 FPS and 60 FPS, achieves a wIoU 0.3
score (see Section 5.4) ranging from 0.71 to 0.79, and successfully performs complete redaction of
privacy-sensitive pixels with a success rate of 91%–99% in human head regions and 77%–91% in
upper body regions, depending on the number of individuals present in the ੗eld of view. It also
achieves over 0.92 recall: the proportion of the privacy-relevant pixels redacted.

3 Problem Definition and Formulation
Problem: Given a series of 2-D arrays containing pixels representing frames captured by stationary
cameras as an input, identify and localize human-related pixels in the visual data, and generate the
smallest rectangular bounding box, represented as the coordinates of its upper leॏ and lower right
corners, i.e., [(ૐmin, ૑min), (ૐmax, ૑max)], for each person in the scene that covers all pixels related
to the person, constrained to run in real time on inexpensive commodity IoT devices (without GPUs
or accelerators). य़e constraint that the number of boxes must equal the number of people in the
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Fig. 2. ERASE system flow chart. Sub-figures 1–6 show the intermediate outputs at each stage of ERASE,
illustrating the redaction process.

scene is important. Without it, the problem becomes a segmentation task for which generating a
box for every privacy-sensitive pixel would be an optimal solution.

य़is section gives our problem de੗nition and formulation for vision-based human detection.
Our solution builds upon SVD-based background removal [11], a historical term we follow with
some reluctance, as it would more accurately be called “SVD-based stationary object removal” in
stationary-camera applications. In the classical problem, pixels associated with stationary back-
ground and objects are removed. य़e remaining pixels, which are associated with moving objects,
have historically been called “foreground pixels”. Our approach uses a quasi-continuous represen-
tation of whether each pixel is associated with moving or stationary objects. See Section 3.2 for
details about the formulation.

We make the following assumptions:
(1) cameras are stationary, which is common in venues such as supermarkets, shopping malls,

and restaurants and
(2) all moving objects are people or extensions of them, e.g., objects held by people. Some violation

of this assumption is acceptable, as it results in unnecessary redaction of non-private pixels
instead of privacy violation.

Violations of each assumption are accounted for in experimentation, and their in੘uence is re੘ected
in the reported accuracy values.

Note that the computational time of ERASE scales approximately linearly with the number of
people in the scene. Detailed analysis will be presented in Section 5.5. One might also imagine a
scenario in which human-related pixels dominate the scene, which would cause SVD to misidentify
person pixels as background pixels because it breaks the low-rank assumption of SVD background
removal: we expect this case to be rare in the applications we are considering, and did not encounter
it in our captured video. य़is situation can be avoided by appropriate selection of camera point of
view and focal length.
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य़e following subsections describe SVD background removal, give the mathematical formulation
of our privacy-preserving redaction, bounding box optimization, and fading detection algorithms.

3.1 (Static) Background Removal
Our method requires background removal for further processing. य़e background removal method
needs to be computationally e॓cient, lighting-agnostic, and layout-agnostic. Existing deep
learning based background removal techniques are not time eਖ਼cient on inexpensive edge devices
without GPUs or accelerators. Subtracting pre-recorded background is not robust to variable
lighting conditions and changes to background layouts. Gaussian mixture model methods like
Mixture of Gaussians (MOG) [22], and SVD background removal are able to address these
challenges. MOG can operate in real-time by estimating and updating the background frame
by frame, whereas SVD requires processing batches of frames to update the background model.
य़is batching has implications for the worst-case latency of SVD-based approaches: although
average throughput may be high, the latency for the ੗rst frame in a batch may be relatively poor.
MOG is capable of handling dynamic backgrounds, such as gently waving trees, with appropriate
parameter tuning. In contrast, SVD provides more accurate background estimates when the camera
is stationary, such as in security camera setups, as in our intended applications. Additionally, SVD
has fewer hyperparameters to con੗gure, primarily the batch size and the number of singular values
used for background estimation. य़is article focuses on SVD-based background removal. Figure 3
shows example outputs of SVD-based background removal under di੖erent lighting conditions,
demonstrating its robustness to such variations.

(a) Raw input in dim lighting. (b) Raw input in bright lighting.

(c) Extracted foreground in dim
lighting.

(d) Extracted foreground in bright
lighting.

Fig. 3. Impact of lighting conditions on foreground (person) detection. SVD
background removal is robust to variational lighting conditions.

SVD can be used for
background removal [16].
During SVD-based back-
ground removal, we
consider a temporal se-
quence of grayscale frames
of length ൓. See Section 5.3
for a detailed description of
the selection of algorithmic
parameters. य़e height
and width of each frame
are de੗ned as ધો and શો.
Within each window of൓ frames, we ੘a॒en each
frame into a column vector
with ધો ⋅ શો elements.
य़ese frames form a batch
for SVD removal. In the
rest of the paper, a batch
refers to ൓ consecutive
frames for background
removal. Columns are
horizontally concatenated
to form a matrix A withધો ⋅ શો rows and ൓ columns. Frames are captured by a stationary camera so the background appears
repeatedly in each frame except in extreme cases, i.e., the camera view is full of moving objects,
which happens rarely in surveillance camera applications. य़erefore, the background is typically
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(a) Original RGB image. (b) Gray scale image aࡺer background re-
moval.

Fig. 4. SVD background removal results.

the principal components of the matrix A and the background vectors form a low-rank matrix.
य़e background is represented by the principal component of matrix A, i.e., vectors with highest
singular values.

SVD background removal consists of the following steps.
(1) Apply SVD on matrix A, where A is de੗ned as UV⊤. In following steps, we follow Shlens’s

de੗nitions [21].
(2) Select the top-ૃ singular values and corresponding leॏ and right singular vectors. य़e esti-

mated backgroundmatrixB = UkkVk
⊤ contains columns representing principal components

of the video. k is a diagonal matrix with top-ૃ singular values on the diagonal. Vk indicates
how Uk varies in magnitude over time.

(3) Foreground pixels are associated with moving objects. य़e foreground matrix is de੗ned
as F = A − B. Each column in F૆ે૊ૅ is a vectorized grayscale frame containing only the
foreground.

Figure 4 shows the original frame and the frame aॏer background removal.

3.2 Formulation and Objective Function
As shown in Figure 4, pixels belonging to the foreground and background are distinguished by how
similar they are to gray. य़e background pixels are closer to gray, and the foreground pixels are
farther (either brighter or darker than) gray. Based on this observation, we de੗ne the following
concepts and expressions.

य़e value of a pixel ૈ in frame F is ૈF ∈ [0, 1]. य़e mean pixel value for frame F is ൙F. य़erefore,
the deviation of ૈF from the background de੗ned as the ungrayness, is Γ(ૈF) = |ૈF − ൙F|.

य़e inclusion of background pixels in bounding boxes is penalized and the inclusion of foreground
pixels is rewarded. A threshold is needed to distinguish background and foreground pixels according
to their ungrayness. Aॏer subtracting this threshold from ungrayness, background pixels have
negative scores and foreground pixels have positive scores. Given that background pixels are
normally in the majority, foreground pixels may be viewed as outliers. Z-score-based outlier
detection is used for determining a proper threshold. य़e Z-score is an eਖ਼cient statistical measure
that describes the position of a raw score in terms of its distance from the mean value, normalized
to the standard deviation. A point is considered to be an outlier if its Z-score exceeds the preset
threshold. य़erefore, we de੗ne the foreground score of ૈF as ൔ(ૈF) = Γ(ૈF) − ൎ ⋅ ൠU, where ൎ is
an algorithmic parameter and ൠU is the standard deviation of pixel ungrayness. ൠU is initialized
with the standard deviation of the ੗rst batch and incrementally updated with a weighted average
of the current batch’s standard deviation ൠB and the previous standard deviation. य़e weight is
the number of frames ભડ in the current batch that contain humans, divided by the batch size ൓,
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i.e., ൠU = ભડ൓ × ൠB + (1 − ભડ൓ ) × ൠU. Section 4.3 explains how to determine whether a human is in
the scene using the UWB localization system. य़is updating algorithm is used, instead of using
the standard deviation of the current batch, is due to the fact that when fading occurs for the
entire batch, all pixels in the extracted foreground are close to gray, i.e., with small ungrayness.
Simply using the standard deviation of the current batch, which is much smaller than the normal
threshold, will cause background pixels to be misclassi੗ed as foreground pixels, making the fading
compensation regions (see Section 4.4) too large.

In the following sections, pixels with positive foreground scores are called (privacy) relevant
and pixels with negative foreground scores irrelevant. Relevant pixels are usually human-related.
Irrelevant pixels are usually not human-related, except in the case of fading. To enable control over
the importance of privacy in our application, a weight ൏ is applied to relevant pixels. य़erefore, the
੗nal foreground score, ൔ, of a relevant pixel ૈ is ൔ(ૈF) = ൏ ⋅ (Γ(ૈF) − ൎ ⋅ ൠU). Given the number of
bounding boxes, ભ, and the set of bounding boxes {ડ}, the cost function is𝒞({ડ}, F) = − ∑ૈ∈∪{ડ} ൔ(ૈF) s.t. |{ડ}| = ભ . (1)

य़e optimized bounding boxe de੗nition follows:{ડ∗} = argmin{ડ} 𝒞({ડ}, F) s.t. |{ડ}| = ભ . (2)

3.3 Optimization Method
य़e optimization algorithm divides the bounding box estimate into two steps. It ੗rst speci੗es initial,
potentially sub-optimal, bounding boxes. Next, the initial boxes are optimized based on the cost
function described in Equation (1) using gradient descent. All bounding boxes in this article are
represented as follows: [(ૐmin, ૑min), (ૐmax, ૑max)]. A bounding box is de੗ned by its upper leॏ and
lower right corners. य़erefore, two coordinates are needed. In ERASE, the initial bounding boxes
are generated using position information from the UWB real-time localization system (RTLS).
Section 4.3 provides details. ERASE uses gradient descent to optimize the bounding boxes. Figure 5
shows the optimization algorithm.

3.4 Efficiency
Eਖ਼ciency (measured by the frame rate achieved on inexpensive edge hardware in this article) is
important for video analysis on edge devices because it in੘uences the supported frame rate and
cost of devices. We improve time eਖ਼ciency in the following ways:

(1) downsampling to a lower resolution,
(2) using randomized SVD,
(3) adjusting the batch size and the number of top singular values for SVD,
(4) using appropriate halting conditions, and
(5) using an eਖ਼cient method for gradient computation.
य़e frame resolution mainly a੖ects computation time for matrix operations. य़ere are many

matrix operations in the system, e.g., SVD, matrix addition, and ੗nding minimum and maximum
elements. Matrix size increases with resolution and computation time increases with matrix size.
य़erefore, the system uses a downsampling strategy to improve eਖ਼ciency. य़e video is ੗rst
converted to grayscale and then downsampled to 160×120 for further processing. We discov-
ered that this resolution is adequate for both SVD-based background removal and bounding box
optimization.
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1: // Initialize bounding box set {ડ}, iteration count ૆.
2: Initialize {ડ} ← {ડinit}, ૆ ← 1, improve ← ∞
3: while ૆ ≤ ૆iter and improve ≥ ൡ do
4: ૆ ← ૆ + 1
5: for all ડ ∈ {ડ} do
6: (ૐmin, ૑min, ૐmax, ૑max) ← ડ
7: for all parameter ൕ ∈ {ૐmin, ૑min, ૐmax, ૑max} do
8: Perturb box ડtemp by adding Δൕ to ൕ
9: Compute raw gradient: ∇ൕઢ ← ઢ({ડtemp}) − ઢ({ડ})Δൕ

10: end for
11: end for
12: Update {ડ} using the computed gradient multiplied with

the learning rate lr .
13: Compute average improvement improve (See Section 3.4).
14: end while
15: return {ડ}

Fig. 5. Bounding box optimization algorithm.

य़e batch size and the num-
ber of top singular values used
for SVD background removal sig-
ni੗cantly a੖ect the computation
time of SVD, especially on edge
devices with constrained memory
and computational power. Instead
of computing full SVD, the system
uses randomized SVD provided by
Scikit-Learn [19], which eਖ਼ciently
computes a (usually very good)
approximate truncated SVD. It is
particularly fast on large matrices
from which only a small number
of components are required. य़ere-
fore, using fewer singular values
speeds up SVD.

Se॒ing an appropriate halting
condition improves eਖ਼ciency by
reducing total optimization time
with li॒le impact on accuracy. At each iteration, we compute the average improvement of the
cost over the previous ੗ve iterations. If the magnitude is below ൡ, the algorithm halts. ൡ is selected
by manually analyzing the gradient descent process on more than 20 representative frames and
choosing a value. य़ese frames were not included in the testing data. According to our testing, the
chosen ൡ based on the representative frames is robust and does not have to be adjusted for di੖erent
environments.

We developed an eਖ਼cient algorithm for gradient computation to accelerate the optimization
process. Our initial approach computed the cost by masking the pixels that are in the bounding
boxes and summing the foreground scores of these pixels. Each gradient computation per bounding
box required eight such operations. However, we observed that frequent memory allocation for such
large masking matrices incurred high overhead, which we reduced by redesigning the algorithm
to avoid allocating new large matrices in each iteration. Instead of recomputing the entire cost, we
calculate the di੖erence region between the previous and the newly considered bounding box, slice
the corresponding region from the foreground score matrix, and mask out any overlapping areas
with other bounding boxes by se॒ing those values to zero, thus ensuring that each pixel contributes
to the cost only once. य़is sliced region, typically much smaller than the full matrix, is then summed
to compute the cost. By operating only on the di੖erence box and reusing the samememory locations,
our method reduces the time required for each gradient descent step by at least 3×.
3.5 Fading Detection and Compensation
Background removal methods based on temporal analysis of scene changes such as MOG [22],
Geometric Median on Gaussian (GMG) [25], and SVD, lack semantic understanding of the scene.
य़ey distinguish foreground from background based on object motion rather than the semantic
features of the objects. If an object remains stationary, the deviations of related pixel intensities
from the background decrease. We call this phenomenon fading. Fading causes disappearance of,
or errors in, bounding boxes. During SVD background removal, if an object is stationary, related
pixels become one of the principal components and are classi੗ed as background. Fundamentally,
fading is the unfortunate result of using motion-based techniques to detect people when people
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are sometimes stationary. Figure 6 shows the ੗rst principal component (parts of the background)
and the foreground in fading and non-fading conditions. When fading occurs, the human ੗gure
appears in the background and almost disappears in the foreground, which causes the bounding
box to miss portions of the human. To solve this problem, we developed a method to detect and
compensate for fading. Section 4.4 provides additional details.

4 Multi-Modal Human Detection and Tracking System

(a) 1st princ. comp. w.o. fading. (b) 1st princ. component w. fading.

(c) Foreground without fading. (d) Foreground with fading.

Fig. 6. First principal components and extracted foreground aࡺer SVD back-
ground removal in non-fading and fading conditions. When fading occurs,
the human figure is in the principal components and disappears from the
background, causing incomplete bounding box coverage.

Using multi-modal mea-
surements has the potential
to improve the accuracy,
eਖ਼ciency, and robustness
of vision-based human
detection. ERASE fuses vi-
sual and UWB localization
information. By project-
ing the UWB position
estimates from physi-
cal coordinates to pixel
coordinates, the system
estimates the number of
people in the camera view
and initializes tentative
bounding box solutions,
thereby accelerating and
improving the accuracy
of vision-based human
detection. य़e system then
optimizes these bounding boxes using the cost de੗ned in Section 3.2. य़e UWB-based location
information also helps detect fading. य़is section describes our multi-modal fusion algorithm.
Although the system is primarily motivated by privacy-preserving applications and it has a
parameter tuned to this application (default object aspect ratio), the algorithm is somewhat robust
to changes in this parameter, and the parameter can be tuned to other applications.

4.1 Ultra-Wide Band Technology and Real-time Localization System
य़e localization system should be accurate, inexpensive, and easy to deploy. UWB-based localization
systems are compatible with these requirements. UWB is a technology for transmi॒ing data across a
wide bandwidth (>500MHz). य़is enables high signal power without interfering with conventional
narrow-band and carrier wave transmissions in the same frequency bands. A UWB radio system can
be used to determine transmission “time of ੘ight” at various frequencies. य़is helps reduce multi-
path propagation errors because frequencies have di੖erent environment-dependent sensitivities
to multipath e੖ects. With a cooperative symmetric two-way metering technique, distances can
be measured with high resolution and accuracy [1]. य़e average indoor localization error of a
time-di੖erence-of-arrival-based UWB RTLS is around 20 cm [23].

य़e UWB devices have wide and increasing availability; there are commercial chips, modules,
and consumer products using UWB technology. For example, AirTag from Apple Inc. is popular
due to its compactness, low cost, long ba॒ery life, and accurate localization results. It has the U1
UWB chip designed by Apple Inc. to enable very accurate short-range localization. UWB is also
widely available in commercial smartphones, e.g., U1 in Apple smartphones and Exynos Connect
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U100 in Samsung smartphones. We believe that UWB RTLS will be widely available for indoor
venues such as malls and supermarkets in the near future.

-2.0 m 0.0 m 2.0 m 4.0 m 6.0 m 8.0 m 10.0 m 12.0 m
X

0.0 m

2.0 m

4.0 m

6.0 m

8.0 m

10.0 m

Y

Anchor 1 Anchor 2

Anchor 3Anchor 4

Tag 0
Ground truth

Fig. 7. Trace from the UWB-based RTLS. The UWB
system can generally achieve sub-centimeter error.

We use MDEK1001 from Qorvo for real-time
localization. It is a toolbox containing 12 nodes
that can be con੗gured as anchors or tags. It
supports anchor auto-calibration, making im-
plementation eਖ਼cient and convenient. य़e tags
periodically report their estimated positions
to the server. Figure 7 shows an example of a
position time-series from this localization sys-
tem. In this example, a person holding a UWB
tag walks along the route indicated by the red
dashed line twice, counterclockwise.

UWB transceivers cost less than 15USD,with
four anchors being the minimum required for 3-
D localization, i.e., the additional cost imposed
by UWB localization is low. We expect that
most people will have UWB transceivers avail-
able on their smartphones in the future, but it would also be possible for venue owners to provide
tags to those entering the venue at a cost of less than 15USD per tag. Calibrating the system takes
less than 20 minutes.

4.2 Camera Calibration
य़e localization system provides real-time locations of tags in 3-D real-world coordinates. य़e
location is projected onto 2-D pixel coordinates for further processing. य़e MATLAB Camera
Calibrator is used with checkerboard calibration [24] to obtain both camera intrinsic parameters
and extrinsic parameters. Figure 8(a) shows an example image used for calibration. Based on the
camera parameters, we form the intrinsic matrixK and the extrinsic matrixR.1 Suppose the location
of the tag in the real-world coordinates is [ૐ૏, ૑૏, ૒૏, 1]⊤ (expressed as homogeneous coordinates).
य़e projected location in pixel coordinates is [ૐ૏, ૑૏, ૒૏]⊤ ⋅ ૒ૈ = K ⋅ R ⋅ [ૐ૏, ૑૏, ૒૏, 1]⊤. Figure 8(b)
provides an example of this projection. Given a point (ૐ૏, ૑૏, ૒૏) in real-world coordinates, the red
circle is the projection of (ૐ૏, ૑૏, 0mm) and the blue circle is the projection of (ૐ૏, ૑૏, 2000mm).
We use 0mm and 2,000mm because they correspond to the ground and a position slightly above a
typical person’s head (note that the technique works for people of varying heights because the
initial bounding box is later optimized). To summarize, the initial bounding boxes are over-sized
and imprecise boxes that cover human ੗gures. य़ese initial bounding boxes are further optimized
using visual information.

4.3 Bounding Box Proposal
To initialize bounding boxes in a frame, we need to know how many people are in the frame, their
locations, and initial bounding box sizes.

Given the resolution of a frame, (ધે, શે), for a point in pixel coordinates (ૐૈ, ૑ૈ), if ૐૈ ∈[0, ધે) ∧ ૑ૈ ∈ [0,શે), the point is within the frame. Assume that the position from the UWB

1य़e extrinsic parameters consist of a rotation, R, and a translation, t. It maps a point from physical coordinates to camera
coordinates. य़e origin of the camera’s coordinate system is at its optical center and its x-axes and y-axes de੗ne the image
plane. य़e intrinsic parameters include the focal length, the optical center, also known as the principal point, and the skew
coeਖ਼cient.
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(a) (b)

Fig. 8. (a) Example image for camera calibration. (b) Projected pixel (red dot) from (ૐ૏, ૑૏, 0mm) and projected
pixel (blue dot) from (ૐ૏, ૑૏, 2000mm), in which the projected dots show that the UWB real-time localization
system is able to adequately estimate the vertical span of the person for use in the initial bounding box
proposal.

(a) (b)

Fig. 9. Examples of the UWB boxes (blue) as initial proposals and the final estimates (red) aࡺer optimization
in (a) two-person cases and (b) five-person cases. The final estimates correctly converge to the human figures
when diख़erent people are in the scene.

RTLS in real-world coordinates is (ૐ૏, ૑૏, ૒૏). Since a person may partially appear in the scene
(for example, the position of the tag aॏer projection is not in the scene but the person’s face is
in the scene), we use two points, (ૐ૏, ૑૏, 0mm) and (ૐ૏, ૑૏, 2, 000mm), to estimate the locations
of the bo॒om and top of the person. We assume that the venue has a ੘at ੘oor so that ૒ = 0mm
represents the ground plane and ૒ = 2, 000mm represents the approximate human head height
plane. According to our tests, using this estimated height is robust and there is no need to adjust it
based on venue or person. Aॏer projection, the locations in pixel coordinates are (ૐૈ1, ૑ૈ1) (head)
and (ૐૈ2, ૑ૈ2) (foot). Arm spans are usually similar to heights. We therefore initialize a bounding
box with height ℎ = ૑ૈ1−૑ૈ2 and width ૏ = ℎ. य़e bounding box is [(ૐૈ1− ૏2 , ૑ૈ1), (ૐૈ2+ ૏2 , ૑ૈ2)].
We call this box a UWB box. We consider a person to be in the scene if the UWB box intersects
with the scene. य़e UWB boxes are approximate: Section 3.3 describes bounding box optimization.
Figure 9 shows the initial UWB boxes and the ੗nal optimized bounding boxes in two-person and
੗ve-person cases. य़e UWB boxes provide the rough and potentially imprecise estimates of human
੗gures and the ੗nal estimates successfully converge to the human ੗gures.

4.4 Fading Detection and Compensation
Fading happens when an object ceases motion and appears to become a part of the background
during SVD, which is common in real-world scenarios. For example, in a retail store, a customer
may stop at a shelf to consider which product to buy. As explained in Section 3.5, a robust system
should be able to detect and compensate for fading.
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(a) With fading compensation. (b) Without fading compensation. (c) Foreground.

Fig. 10. The UWB box (blue) and final estimate (red) (a) with fading compensation and (b) without fading
compensation. When fading happens, pixels in the foreground (c) are almost gray. Without fading compensa-
tion, as (b) shows, the final bounding box fails to cover the human figure exposing most privacy-relevant
pixels. Fading compensation enables the corrects final bounding box shown in (a).

A literature search revealed only one study investigating fading in SVD-based background
subtraction. Kajo et al. [9] describe an incremental tensor-based SVD method for abandoned
object detection that decomposes video data into background and foreground components using
spatiotemporal tensor slices and eigen੗lter analysis. It is computationally eਖ਼cient, suitable for
real-time applications, requires no training data, and is robust to occlusion, illumination variation,
and crowded environments, but it depends entirely on video data and empirical thresholds for
detection.

In contrast, our approach avoids these dependencies by detecting fading conditions using location
measurements. It is developed for a di੖erent scenario in which those subject to fading carry UWB
tags (e.g., smartphones). य़is UWB RTLS informs on whether a user is stationary to identify
fading. य़is approach introduces minimal computational overhead, requires only a single threshold
parameter, and is eਖ਼cient. Furthermore, it is robust to long-duration fading events, as it relies solely
on the temporal consistency of UWB localization data. It does, however, require UWB infrastructure
and can only detect stationary objects that are equipped with UWB tags.

In this subsection, we denote the location of a UWB tag at discrete time step ૌ in real-world
coordinates as (ૐૌ, ૑ૌ, ૒ૌ). For fading detection, we only need horizontal coordinates (ૐૌ, ૑ૌ). ૏િ is
the window size for fading detection and ൞ represents the threshold below which an object is
considered stationary. A tag is considered stationary at time ૌ if Equation (3) holds.ણ̄ૌ = 1૏િ ૏િ/2∑ૃ=−૏િ/2ૃ≠0 √(ૐૌ − ૐૌ−ૃ)2 + (૑ૌ − ૑ૌ−ૃ)2 ≤ ൞. (3)

य़e historical bounding box right before fading happens, i.e., before motion ceases, is likely
to correctly cover most of the person in the following frames. Considering that parts of the per-
son may move out of this bounding box, e.g., raising arms, the ੗nal redaction box should merge
the historical bounding box with information from the current frame. य़e system compensates
for fading as follows. When fading is detected, a historical estimate bounding box associated
with a tag is used. य़is estimate is updated every iteration in which fading is detected. य़e out-
put of the gradient descent algorithm run on the current frame is called the current estimate.
य़e ੗nal result is the union of the current estimate and historical estimate. Figure 10(a) and
Figure 10(b) illustrate the ੗nal bounding box (red) with and without fading compensation. In
Figure 10(b), the ੗nal estimate fails to cover the human ੗gure due to fading and exposes most of the
privacy-related pixels. य़e fading detection and compensation methods enable correct bounding
boxes.
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(a) Unredacted (b) Blur (c) Mask out (d) Pixelation (e) Replace

Fig. 11. The unredacted frame and the results in diख़erent redaction modes that the system supports.

4.5 Redaction Modes
Aॏer generating bounding box estimates, the system redacts pixels in bounding boxes. य़e system
supports various redaction modes. Figure 11 shows the unredacted and redacted frames using
di੖erent redaction modes including blurring, masking, pixelation, and invisibility (i.e., replacing
pixels inside bounding boxes with the pre-captured background image). Users can select the mode
based on application needs. For example, there may be scenarios in which pose estimation is
required and is feasible aॏer applying blurring or pixelation, but masking the bounding boxes
would prevent pose estimation. Discussions of the impact of di੖erent privacy redaction methods
on vision-based deep learning models are out of the scope of this article, but appear in other
works [5, 10, 18].

5 Evaluation
य़is section describes our experimental setup, evaluation dataset, algorithmic parameters, and
explains the implications of our experimental results.

5.1 Hardware Setup
As mentioned previously, ERASE is designed for implementation on inexpensive, commodity edge
devices. य़is subsection indicates the hardware we use and the costs of our system. य़e system
uses the Qorvo MDEK1001, which includes 12 packaged UWB nodes with pre-loaded ੗rmware. It
costs 299USD for the UWB RTLS and 25USD per node. Note that we use this expensive toolbox
because it provides visualization services useful during experimentation. Venue owners might
further reduce the cost by using less expensive UWB nodes (around 15USD). Four anchors are
required to build a localization system for a venue at a cost of around 60USD. Many smartphones
already contain UWB transceivers (tags), e.g., iPhones since iPhone 11. We believe this will be more
common in the future, making it available in most scenarios. It would also be possible for the venue
owners to provide tags to those entering the venue at a cost of less than 15USD per tag.

य़e requirements of our target application scenarios impose constraints on the computational
hardware used for evaluation. First, it must be cost-e੖ective (≤ 50USD per unit) to facilitate large-
scale deployment. य़is generally implies that it uses a CPU common in IoT edge devices, such as
those in the Cortex-A series. Finally, the board should provide suਖ਼cient memory (at least around
2GB) to support eਖ਼cient data processing, especially matrix operations. To facilitate development
and expedite system veri੗cation, we also consider the availability of well-supported drivers for
commonly used peripheral devices, such as cameras. Based on these considerations, the ROCKPro64
single-board computer was an option for experimental evaluation. Although the Raspberry Pi 4B
has similar performance at a lower cost, the ROCKPro64 was already available in our lab and was
therefore used for experimentation.

ERASE is evaluated on a ROCKPro64 single-board computer costing 80USD with a Rockchip
RK3399 hexa-core processor (dual-core 1.8 GHz ARM Cortex A72 and quad-core 1.4 GHz ARM
Cortex A53), and 4GB of LPDDR4 system memory. य़e ROCKPro64 consumes 5–8wa॒s under
CPU-intensive loads. य़e ARM Cortex A72 is a commonly used CPU on IoT development boards,
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(a) Computer lab (b) Conference room (c) Library

Fig. 12. Data were gathered in three indoor spaces with diख़erent room sizes, furniture layouts, and lighting
conditions to evaluate the system’s sensitivity to these variations.

e.g., the Raspberry Pi 4B. We used the ROCKPro64 for evaluation, but intentionally avoided using
GPU acceleration to make its performance very similar to less expensive development boards using
the same processor, such as the 35USD Raspberry Pi 4B.

य़e system implementation is inexpensive and can be rapidly deployed. It generally takes us 10
minutes to calibrate a camera with MATLAB Camera Calibrator and 20 minutes to calibrate the
UWB subsystem with 4 anchors.

5.2 Dataset
Evaluation of ERASE requires a UWB/vision time-synchronized dataset. य़ere is an existing
multi-modal dataset [3] containing video, human traces from the UWB RTLS, and acceler-
ation from accelerometers. However, in this dataset, data are collected for only one person
at a time. We believe it is important to evaluate our system with a varying number of peo-
ple in the scene. य़erefore, we collected a dataset which we plan to make available for use
by other researchers. य़e dataset contains time-synchronized video data and UWB position
data.

Table 1. Venue Parameters

Venue Dimension (m) Lighting conditions (lux)
Conference Room 4.8 × 3.5 492–783
Computer Lab 9.5 × 6.9 305–479
Library 10.5 × 11 491–699

To evaluate ERASE in various
indoor scenarios, we collected
data from three indoor venues
with di੖erent furniture layouts,
room sizes, and lighting condi-
tions. Table 1 summarizes the di-
mensions and lighting intensity
ranges of each venue. To mea-
sure lighting intensities, we used a lux meter at approximately 20 evenly distributed locations
within each venue and report the ranges of the lux values. Note that none of the venues is ex-
tremely dark because public venues such as grocery stores and hospitals are typically designed
with adequate light for human vision. Figure 12 shows the layouts.

Participants hold UWB tags in their hands at waist level. Non-line-of-sight localization errors
tend to be higher when tags are carried in pockets, and decrease when held in the hands. Previous
work [17] discusses the impact of sensor positions on human bodies on UWB ranging. य़ere is
work [4, 14] on detecting and mitigating errors in non-line-of-sight conditions. With compensation
for non-line-of-sight, the UWB system is able to accurately estimate user positions even when
UWB tags are carried in pockets. We also vary the number of people in the scene from one to ੗ve
to measure the impact on accuracy and time-eਖ਼ciency. In total, the dataset contains 60 minutes of
video at 10 FPS (36,000 frames) and time-synchronized human traces from the UWB RTLS at the
same frequency.
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We provide ground truth bounding boxes for each video. We do so by running YOLO11x, the
most powerful model in the YOLO11 series, on the videos to produce estimated bounding boxes,
inspecting all frames with predicted bounding boxes, and manually drawing corrected bounding
boxes on frames for which YOLO11x erred.

5.3 Algorithmic Parameters Table 2. Algorithmic Parameters

Parameter Value Name൓ 50 SVD batch sizeૃ 5 SVD top-ૃ componentsൎ 1 score threshold weight൏ 3 foreground score multiplierൡ 0.5 improvement threshold for halting
wf 10 fading detection window size൞(m) 0.15 fading detection threshold
lr 1 learning rate
niter 20 maximum iterations

One of our design goals is
to minimize the number of
algorithmic control parameters
requiring tuning by users. य़is
section de੗nes all the algorith-
mic parameters and indicates
how they were determined.
य़e system has the following
parameters: ൓, ૃ, ൎ, ൏, ൡ, wf , ൞, lr ,
and niter . Table 2 indicates the
values of these parameters. We
hold each parameter constant
over all locations, i.e., we do not tune the parameters to speci੗c locations.൓ is the SVD batch size. If ൓ is too small, it will violate the low-rank assumption of SVD background
removal because the background vector is less principal and representative of the batch. If, that
is, too large, it increases memory requirements and computation time. ૃ determines the number
of singular values and related singular vectors representing the background. As ૃ increases, more
singular vectors are classi੗ed as the background.

As shown in the de੗nition of the pixel foreground score in Section 3.2, ൎ can be used to control the
threshold to determine relevant and irrelevant pixels. Increasing ൎ reduces the number of relevant
pixels. य़erefore, by selecting a proper ൎ, the system is able to correctly assign foreground scores to
pixels during gradient descent, and bounding boxes are able to converge to human ੗gures. Reducingൎ reduces the probability of misidentifying relevant pixels as irrelevant, but increases the probability
of misidentifying irrelevant pixels as relevant. For most privacy-relevant applications, using a
smaller ൎ is appropriate because leaking a relevant pixel is worse than redacting an irrelevant pixel.൏ is a weight given to foreground scores of relevant pixels. ൏weights foreground scores of relevant
pixels (privacy-related foreground) and irrelevant pixels (privacy-unrelated background) di੖erently
during optimization. If a system assigns the same weights to relevant and irrelevant pixels, some
privacy-relevant pixels may escape redaction, for example, people’s faces might be exposed. We
therefore introduce the weighting parameter ൏ allowing trade-o੖s between false negatives and
false positives. य़e more important privacy is relative to mistaken redaction of privacy-irrelevant
pixels, the larger ൏ should be.ൡ is a threshold de੗ned in Section 3.4. It determines the halting condition for gradient descent.
wf is the window size in fading detection of ERASE (see Section 4.4). As wf decreases, fading

detection becomes more sensitive. ൞ is the distance threshold in meters for fading detection in
ERASE. Within a window, if the average distance between previous positions and the current
position in real-world coordinates is below ൞, it is detected as fading.
lr is the learning rate in gradient descent. niter is the maximum number of iterations.

5.4 Measures
Results for three privacy-speci੗c measures are provided. We report redaction success rates for three
regions of interest: the whole body, the upper body, and the face. We visually check whether any
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Fig. 13. (a) The estimate (red) successfully covers all privacy-relevant pixels but includes some privacy-
irrelevant pixels; it would be adequate for many privacy protection applications. However, the IoU of the
ground truth (white) and the estimate is only 0.648, which is low. In contrast, weighted IoU can be used to
penalize leakage of privacy-relevant pixels more heavily than inappropriate redaction of privacy-irrelevant
pixels. (b) Increasing ൐ (see Section 5.4), penalizes the redaction of privacy-irrelevant pixels more heavily. The
best value of ൐ is application-dependent. With ൐ = 0 wIoU is equal to recall. With ൐ = 1, wIoU is equal to IoU.
The main error source for ERASE is redaction of privacy-irrelevant pixels.

region of interest is exposed aॏer redaction in each frame. य़ese measures are useful because they
are directly privacy-related, but they do not consider how much useful background information is
maintained. In other words, one might achieve a 100% success rate by redacting the whole scene,
i.e., transmi॒ing nothing. य़erefore, we propose other privacy measures.

Traditional intersection over union (IoU) has been used to evaluate the quality of bounding
box estimates. It is de੗ned as TP

TP+FP+FN . TP is true positive, FN is false negative, and FP is false
positive. However, IoU is inappropriate for privacy-preserving applications because false positives
and false negatives should oॏen have di੖erent penalties. From the perspective of privacy, false
negatives imply the leakage of private information and false positives imply unnecessary redaction
of privacy-irrelevant data. Leaking a pixel is generally much more harmful than inappropriately
redacting a pixel. As shown in Figure 13(a), the estimate (red) successfully covers all privacy-
relevant pixels while including a few privacy-irrelevant pixels, which is an acceptable estimate for
privacy-relevant applications. However, the IoU of the ground truth (white) and the estimate is
only 0.648, a poor score for IoU.

Motivated by the problem of IoU and inspired by the de੗nition [2] of weighted IoU for
segmentation, we de੗ne a measure, also called wIoU, allowing di੖erent weights for false negatives
and false positives for privacy-relevant applications. wIoU is de੗ned as TP

TP+൐×FP+FN . ൐ ∈ [0, 1]
is an algorithmic parameter allowing adjustment of the penalty. In scenarios where privacy is
more important and privacy-irrelevant information is less important, a lower ൐ should be used.
With ൐ = 1, wIoU is equal to IoU. With ൐ = 0, wIoU is equal to recall, de੗ned as TP

TP+FN . Recall is
useful for determining the proportion of privacy-relevant pixels that are covered by the estimated
bounding boxes, but it does not penalize inclusion of privacy-irrelevant pixels in bounding
boxes, which means a method can simply maximize recall by redacting the whole scene, i.e.,
transmi॒ing nothing. IoU penalizes the inclusion of privacy-irrelevant pixels too much relative
to missing privacy-relevant pixels. With ൐ = 0.3, the wIoU of boxes in Figure 13(a) is 0.849. In
Figure 13(b), by sweeping ൐ from 0 to 1, the measure penalizes the inclusion of privacy-irrelevant
pixels more heavily. य़e best value of ൐ is application-dependent. य़e error of our system mainly
comes from incorrectly classifying privacy-irrelevant pixels as privacy-relevant, rather than
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exposure of privacy-relevant pixels. In this article, we use wIoU with ൐ = 0.3 (i.e., ૏ન ે઴0.3) for
evaluation.

5.5 Efficiency and Accuracy Comparison
We evaluate the eਖ਼ciency and accuracy of ERASE and compare it with other approaches:
YOLO11m [8], YOLO11n (the YOLO11 model with the fewest parameters), MediaPipe [12]’s pose
model, and MediaPipe’s object detection model.2 YOLO11m has 20.1M parameters and YOLO11n is
a tiny model with 2.6M parameters. MediaPipe’s models have 3.37M parameters. Evaluation is
conducted when di੖erent numbers of people are in the scene.
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Fig. 14. Note that the lines for YOLO11n and Medi-
aPipe Detect overlap. ERASE is able to run at over
20 FPS, approximately 4× faster than the neural net-
work models, when five people are in the scene.

As Figure 14 shows, the time eਖ਼ciency of
ERASE is approximately linearly related to the
number of people because the number of itera-
tions is linearly related to the number of bound-
ing boxes for each frame. When one person is
in the scene, the system runs at over 60 FPS,
and when ੗ve people are in the scene, it runs
at over 20 FPS. We believe 10 FPS is the lowest
acceptable rate for most applications requiring
video streaming of human activities. However,
YOLO11n runs at less than 4 FPS on the ROCK-
Pro64: too slow for real-time use. ERASE is ੗ve
times as fast as YOLO11n.

Figure 15 compares the accuracy of
YOLO11m, YOLO11n, ERASE (ours), MediaPipe
detect, and MediaPipe pose, in recall, ૏ન ે઴0.3,
IoU, and precision, when di੖erent numbers
of people are in the scene. Recall indicates the
proportion of privacy-relevant pixels redacted. य़e precision, de੗ned as ળયળય+થય , is the proportion of
privacy-relevant pixels in the estimated bounding boxes. Inclusion of too many privacy-irrelevant
pixels results in a very low precision. YOLO11m achieves the best accuracy in all measures, but
is too slow for real-time use on inexpensive, commodity IoT hardware. ERASE achieves good
results in recall and ૏ન ે઴0.3, i.e., it redacts most privacy-relevant pixels while maintaining useful
environment information. However, it has lower precision compared to other neural network
models, implying that its bounding boxes include more privacy-irrelevant pixels than others.

We found that for the dataset collected in the smallest room shown in Figure 12(b), where the
person is close to the camera, none of the tested neural network models had a high recall. य़is is
likely due to the human ੗gures being closer (and therefore appearing larger than typical in the
training data) and visual occlusion by furniture. However, ERASE had consistent accuracy because
SVD background removal is scale-insensitive. ERASE exhibits robustness to complex human poses.
As shown in Figure 16, the predicted bounding boxes (in red) accurately capture human ੗gures,
even under partial occlusion and across a diverse range of poses, such as si॒ing and bending.
Leveraging the nature of SVD background subtraction, which detects motion rather than relying
on semantic or visual features, ERASE detects the human ੗gures, regardless of pose complexity
and occlusion conditions.

2For YOLO models, results are computed with conf = 0.5 and imgsz = 320. For MediaPipe’s pose, results are computed
with num_poses = 5; min_pose_detection_conटdence = 0.35; min_pose_presence_conटdence = 0.35. For MediaPipe’s object
detection, results are computed with category_allowlist = [“person”]; max_results = 5; score_threshold = 0.35.
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Fig. 15. Accuracies as functions of redaction method and number of people in scenes. YOLO11m achieves
the best accuracy in all measures. ERASE achieves good results in recall and ૏ન ે઴0.3, which implies that it
is able to redact most privacy-relevant pixels without redacting many privacy-irrelevant pixels. However, it
has lower precision compared to the neural network models, implying that its estimated boxes cover more
privacy-irrelevant pixels. ERASE is the only one capable of running in real-time.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 16. ERASE is capable of detecting individuals across a variety of poses and under partial occlusion. The
predicted bounding boxes (in red) accurately enclose the human figures in these challenging scenarios.

Figure 17 shows the accuracies of redaction for heads, upper bodies, and whole bodies. Ground
truth is determined by manual inspection of every frame. य़e strictest possible standard is used:
if even a pixel of the relevant body region is exposed, the redaction is considered a failure. For
example, if four people are successfully redacted and a pixel of the ear of the last person is exposed,
this is considered a failure for the frame, hence the decrease in accuracy when more people are
present. Most failures in multi-person frames only a੖ect one person. ERASE has a more than
90% success rate in redacting human heads (faces) and more than 77% success rate in redacting
human upper bodies. It has a relatively lower whole body redaction success rate, especially for the
੗ve-person case. Most failures result from exposure of the lower legs. Compared to the torso, the
human lower legs cover a smaller area in the scene, resulting in more irrelevant pixels and fewer
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relevant pixels near the bo॒om of the bounding boxes. During optimization, this may cause the
region to be excluded from the bounding box.

5.6 Limitations and Caveats

1 2 3 4 5
Number of People

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 R

ed
ac

tio
n 

Ra
te

0.992 0.989
0.961

0.931 0.914

0.978
0.954

0.900

0.830
0.773

0.867 0.860
0.802

0.713

0.564

Head redaction
Upper body redaction
Whole body redaction

Fig. 17. Success rates for redacting heads, upper bodies,
and whole bodies for various numbers of people in the
field of view. Aࡺer redaction by ERASE, most privacy-
relevant pixels are successfully removed.

य़ere are several limitations to ERASE. It re-
quires UWB RTLS deployment, although this
is inexpensive (less than 15USD per node) and
rapidly deployable (20 minutes to calibrate four
anchors). It is designed for venues in which the
owners have the right to install cameras and
UWB infrastructure, i.e., we do not focus on
venues without owners. It also requires that
customers have smartphones or other mobile
devices that support UWB localization, or that
venue owners provide UWB tags to customers,
which would introduce cost and maintenance
e੖ort. Although ERASE is robust to some UWB
RTLS error, extreme errors resulting from sig-
nal occlusion that reduces the number of usable
anchors below four would reduce redaction ac-
curacy, perhaps catastrophically. In this situ-
ation, reducing such non-line-of-sight errors,
e.g., by adding additional UWB anchors, is likely the most straightforward way to improve system
accuracy. Lack of semantic understanding is another limitation of ERASE. It cannot distinguish
between humans and other moving objects that may appear in the venue, e.g., dogs or robots.
य़is is a (possibly necessary) tradeo੖ to enable use on performance-constrained commodity edge
hardware. As GPU hardware costs decrease, it may become feasible to deploy deep neural networks
such as YOLO on edge devices at scale. At present, the high computational and ੗nancial costs
associated with such deep neural networks remain signi੗cant barriers to deployment.

6 Conclusion
य़is article has described ERASE, an eਖ਼cient real-time multi-modal human tracking system capable
of running on low-end edge devices. Our goal is to enable inexpensive on-device video redaction for
privacy protection. We tested ERASE on a dataset collected in three representative indoor locations
using only inexpensive, commodity edge devices. य़e multi-modal system operates at 20–60 FPS,
achieves a wIoU 0.3 score of 0.71–0.79, and succeeds in completely redacting all privacy-sensitive
pixels at a rate of 91%–99% in human head regions and 77%–91% in upper body regions, varying
with the number of people present in the ੗eld of view. ERASE enables accuracy and eਖ਼ciency
for real-time privacy-preserving visual human tracking on inexpensive, commodity edge devices.
It is robust to changing lighting conditions, as well as variations in human scale, distance, and
pose, without requiring retraining or parameter tuning. Our results demonstrate the practicality of
real-time edge redaction in human tracking applications using inexpensive, commodity hardware.
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