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Abstract—In this paper, we present a multiobjective hardware–
software cosynthesis system, called SLOPES, for multirate
low-power real-time distributed embedded systems consisting
of dynamically reconfigurable field-programmable gate arrays
(FPGAs), processors, and heterogeneous communication re-
sources. This cosynthesis algorithm simultaneously optimizes sys-
tem price and average power consumption. First, we present an
evolutionary algorithm that automatically determines the quan-
tities and types of system resources, assigns tasks to different
potentially reconfigurable processing elements, and assigns com-
munication events to communication resources. Second, we
propose a dynamic priority multirate scheduling algorithm to de-
termine the times at which all the tasks and communication events
in the system occur. This two-dimensional scheduling algorithm
determines task priorities based on real-time constraints and
detailed frame-by-frame FPGA reconfiguration overhead infor-
mation. Experimental results indicate that the proposed method
reduces schedule length by an average of 34.3% and reconfigura-
tion energy by an average of 40.4%, compared to a method that
does not consider the effect of partial reconfiguration during syn-
thesis. SLOPES yields multiple system architectures that tradeoff
system price and average power consumption under real-time
constraints.

Index Terms—Hardware–software co-design, low-power design,
reconfigurable architectures, system-level synthesis.

I. INTRODUCTION

THIS PAPER describes algorithms to synthesize low-

power low-price embedded systems containing dynami-

cally reconfigurable field-programmable gate arrays (FPGAs).

This algorithm is most closely related to two research fields:

hardware–software cosynthesis and reconfigurable computing.

The proposed algorithms optimize a system-level hardware–

software architecture, taking care to properly use dynamically

reconfigurable FPGAs to reduce system price and average

power consumption under hard real-time constraints.
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Hardware–software cosynthesis algorithms automatically

produce hardware–software architectures for distributed em-

bedded systems. Ideally, they minimize multiple costs, such

as execution time, price, and average power consumption.

Given a specification, a hardware–software cosynthesis al-

gorithm must select different processing elements (PEs) and

communication resources to use in the embedded system (al-

location), determine which resource will be used to carry out

each portion of the specification’s computation and commu-

nication (assignment), and produce a schedule for all of the

specification’s computation and communication (scheduling).

Thus, given an embedded system specification, a cosynthesis

algorithm produces a detailed description of an architecture

that meets the design constraints and optimizes a set of costs.

Prior to the work described in this paper, hardware–software

cosynthesis algorithms had not considered the use of par-

tially reconfigurable FPGAs for low-power embedded systems.

However, researchers had considered using fully reconfig-

urable FPGAs in the synthesis of low-price embedded systems

[1]–[7]. This previous work did not consider power consump-

tion and did little to exploit partial reconfiguration.

FPGAs are commonly used in distributed embedded

systems. They share many traits with application-specific inte-

grated circuits (ASICs); they are parallel hardware platforms.

However, they have the advantages of reducing design time

and supporting dynamic (runtime) reconfiguration. Although

FPGAs typically have lower performance, higher power con-

sumption, and higher energy consumption when compared with

ASICs, for many applications, they have substantially better

performance, average power consumption, and energy than

general-purpose processors [8]–[14]. When a design uses dy-

namic reconfiguration, it is important to minimize the overhead,

i.e., time and energy consumption, associated with reconfig-

uration. To reduce this overhead, many new reconfigurable

architectures have been proposed [15]–[19]. In modern dy-

namically reconfigurable FPGAs, the embedded configuration

storage circuitry can be updated selectively in a few clock

cycles without disturbing the execution of the remaining logic.

These new designs have increased the potential benefit of using

dynamically reconfigurable FPGAs in low-power embedded

systems by dramatically reducing the performance and energy

penalties of dynamic reconfiguration. However, these costs are

still substantial.

With the success of battery-powered personal computing

devices and wireless communication systems, reducing average

power consumption has become a key goal in embedded system
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design. For the systems under consideration, the total runtime

depends on specifications provided by the designer, although

individual tasks may be executed for different durations de-

pending on synthesis decisions. Therefore, average power con-

sumption and energy consumption within a period of operation

are proportional; for the systems under consideration, reducing

either one reduces the other in proportion.

Although their flexibility makes dynamically reconfigurable

FPGAs a good solution for portable applications, their en-

ergy consumption cannot be neglected. Online reconfiguration

consumes energy as well as time. Moreover, reconfiguration

energy consumption can account for a substantial fraction of

FPGA energy. FPGAs require energy for both execution and

reconfiguration. This makes FPGA energy optimization more

complex than processor and ASIC energy optimization, which

only have execution energy consumption.

In summary, recent changes in FPGA technology have made

the use of partially reconfigurable FPGAs in low-power embed-

ded systems dramatically more promising. This paper describes

a new dynamically reconfigurable embedded system synthesis

algorithm based on an evolutionary hardware–software cosyn-

thesis algorithm and a novel scheduling algorithm for partially

reconfigurable FPGAs.

A. Previous Work

A number of researchers have worked on the hardware–

software cosynthesis problem. In this section, we will sur-

vey some of the work most relevant to the proposed algo-

rithm, i.e., the synthesis of heterogeneous distributed embedded

systems without tight limits on resource allocations. Bender

solved a simplified version of the hardware software cosyn-

thesis problem with mixed-integer linear programming (MILP)

[20]. He used a linear weighting sum to combine execution

time, processor prices, and communication resource prices.

Although the approach is optimal, it must use a suboptimal

heuristic preprocessing stage to have any chance of solving

complicated (realistic) problems in a reasonable amount of

time. Dave et al. used a constructive algorithm to solve the

classical multirate distributed system cosynthesis problem. This

work was extended to target low-power embedded systems

[21] and hierarchical embedded systems [22]. Hsiung devel-

oped a hardware–software cosynthesis algorithm for massively

parallel homogeneous software applications that enumerates

solutions in a small set [23]. Solutions that do not satisfy the

specified constraints are eliminated. Jeong et al. developed

a hardware–software cosynthesis algorithm that allows the

use of incrementally dynamically reconfigurable hardware [4].

Karkowski and Corporaal allocated and partitioned an ANSI-C

specification among homogeneous processors on a single chip

[24]. Kuchcinski used constraint logic programming to mini-

mize the price of an embedded system under time constraints

[25]. The computational complexity of his algorithm may be re-

duced, as long as one is willing to tolerate suboptimal solutions.

Lee et al. developed an A⋆ search algorithm to optimize em-

bedded system resource allocations [26]. This algorithm uses

earliest deadline first scheduling integrated with a load balanc-

ing assignment algorithm borrowed from behavioral synthesis.

It does not model intertask dependences. Oh and Ha developed

an iterative algorithm targeting the heterogeneous distributed

system cosynthesis problem [27]. Prakash and Parker (P&P)

developed a MILP solver for the distributed hardware–software

cosynthesis problem [28]. Schwiegershausen and Pirsch devel-

oped a MILP solver for the heterogeneous distributed system

synthesis problem [29]. Srinivasan and Jha developed a heuris-

tic constructive algorithm that synthesizes fault-tolerant real-

time distributed embedded systems [30]. Teich et al. applied

an evolutionary algorithm to the cosynthesis problem. They

repaired bad solutions instead of avoiding their creation [31].

Their algorithm optimized period and price in the absence of

hard real-time constraints. Wolf developed a fast greedy itera-

tive improvement algorithm for the classical cosynthesis prob-

lem [32]. His algorithm may be used to model communication.

However, in the presence of nonzero communication times,

this algorithm is no longer guaranteed to produce the minimal

cost solutions that meet deadlines. Yen and Wolf developed

an iterative improvement algorithm for the hardware–software

cosynthesis problem [33].

Most previous hardware–software cosynthesis algorithms do

not consider the use of dynamically reconfigurable logic. In

those that do [1]–[7], power consumption is not optimized, and

partial dynamic reconfiguration is not fully exploited. In Dick

and Jha’s work, multiple tasks may not execute concurrently

on the same FPGA [1]. Jeong et al. use an optimal MILP

formulation and cannot synthesize large embedded systems in a

practical amount of time [4]. The cosynthesis system proposed

by Noguera and Badia uses prefetching techniques to minimize

reconfiguration latency [7]. However, this approach overlooks

power consumption. In addition, many algorithms make the

simplifying assumption that the target embedded system con-

sists of one processor and one FPGA [5], [6].

Past work has considered the use of dynamically reconfig-

urable FPGAs in high-level synthesis [34]–[36], [70]. However,

in system-level synthesis, the problem is much more complex.

The execution time, energy consumption, and reconfiguration

overhead for each task, as well as the resource utilization and

reconfiguration conditions of the FPGAs, must be considered.

The complexity of the scheduling problem, which is known to

be NP-complete [37], is increased because it must be extended

from the time domain to both time and space domains. The

problem is further complicated by making use of partial, instead

of full, dynamic reconfiguration.

B. Our Approach and Contributions

We propose to use an evolutionary algorithm to tackle the

problems of allocation and assignment. Algorithms in this class

have been shown to rapidly produce high-quality solutions for

the cosynthesis problem [1], [38], [39]. Multiobjective system

requirements can be simultaneously optimized. No arbitrary

limitations are imposed on the quantities and types of system re-

sources. However, resource use is minimized as a consequence

of minimizing energy consumption and price. The optimiza-

tion infrastructure described in this paper shares features with

an evolutionary algorithm appearing in a coauthor’s doctoral

dissertation [40]. However, unlike that work, the algorithm
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Fig. 1. Task graph.

described in this paper supports partial dynamic reconfiguration

of FPGAs.

Since scheduling is performed in the inner loop of cosyn-

thesis, a scheduler with a low time complexity is required. In

addition, efficient methods for reducing the delay and energy

overheads of dynamic reconfiguration are required. We propose

a 2-D multirate cyclic scheduling heuristic. The scheduler uses

resource and frame-by-frame reconfiguration information in its

efforts to globally minimize the time and energy consumption

resulting from reconfiguration, execution, and communication.

The proposed reconfigurable hardware–software cosynthesis

algorithm tightly integrates the allocation, assignment, and

scheduling optimization problems. It simultaneously optimizes

system price and energy consumption under real-time con-

straints, producing multiple solutions that trade off these costs.

The rest of this paper is organized as follows. In Section II, we

define the terms and models used in our cosynthesis system. In

Section III, we present an overview of the cosynthesis system

and optimization infrastructure. In Section IV, we describe

the scheduling algorithm. We present experimental results in

Section V and conclude in Section VI.

II. PRELIMINARIES

In this section, we define the concepts and models used in

our cosynthesis system.

A. Input Specification

The input specification is a set of task graphs (see Fig. 1).

A task graph is a directed acyclic graph in which a node is a

task, i.e., a portion of the computation an embedded system is

required to carry out. Matrix multiplication is an example of

a task type. Edges represent communication events. An edge

between tasks represents a data dependence and is labeled with

the quantity of data transmitted. Each task graph has a period,

which represents the interval between the earliest start times of

its consecutive executions. In real-time systems, hard deadlines

are associated with some tasks. A multirate embedded system

contains task graphs with different periods. The least common

multiple of these periods is the hyperperiod. A valid and

irredundant static schedule spans a system’s hyperperiod [41].

B. Resource Library Model

In addition to task graphs, a cosynthesis algorithm needs in-

formation from a resource library. This library contains general-

purpose processors, dynamically reconfigurable FPGAs,

communication links, and memories that can be used for

cosynthesis. We model two types of PEs: processors and

FPGAs

1) Processor: A processor is a general-purpose PE used

to carry out tasks. A processor may represent a micro-

processor, a microcontroller, a digital signal processor

(DSP), or an application-specific instruction processor.

Each processor has a price, average static power con-

sumption, and a variable indicating whether or not it has

a communication buffer. Processors with communication

buffers may concurrently execute tasks and communicate

data with other PEs. For each task–processor pair, there

is a worst-case execution time and memory load. Worst-

case execution time is the maximum amount of time a

processor may require to carry out the task. Memory load

is the amount of memory required by the task during

execution. This variable accounts for instruction and data

space. The information for each task, e.g., execution time

and average power consumption, can be determined using

techniques presented in the literature [42]–[44].

2) Dynamically reconfigurable FPGAs: FPGAs are

high-density programmable logic devices for which

programming is typically conducted by streaming a

configuration into static random access memory distrib-

uted within the FPGA. For appropriate tasks, FPGA-

based implementations improve energy/time efficiency

by an order of magnitude in comparison with general-

purpose processors [8]–[14]. Designs based on instruc-

tion processors and FPGAs have been widely used in

embedded systems. In most such designs, the FPGA

is used to implement the tasks that consume the most

time and energy. Runtime reconfiguration will make it

more practical for FPGAs to support numerous tasks.

Many types of FPGAs have long supported dynamic

in-circuit reprogramming. However, high reconfiguration

energy consumption, long reprogramming times, and

the difficulty of manually designing multimode systems

have limited the use of dynamic reconfiguration in the

industry. Recent improvements in FPGA technology,

such as partial reconfiguration, have made dynamic

reconfiguration significantly faster and reduced the

associated energy consumption. Commercially available

reconfigurable devices supporting partial dynamic

reconfiguration include Virtex [19] from Xilinx, FPSLIC

from Atmel [45], and XPP64-A1 from PACT [46]. We

will focus on examples of the Virtex family.

In 1993, Xilinx acquired Algotrinix Ltd. and adapted their

Configurable Array Logic architecture, producing the XC6200

family of FPGAs. This was the first widely sold product
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Fig. 2. Dynamically reconfigurable FPGA model.

supporting partial reconfiguration. The XC6200 uses a 2-D

reconfiguration model in which the configuration of each in-

dividual on-chip logic component, for instance, configurable

logic blocks (CLBs), can be modified at runtime. The XC6200

family was discontinued, partially due to the complexity of

this 2-D reconfiguration architecture. Instead, in the Virtex and

Virtex-II families, Xilinx uses a 1-D reconfiguration model, as

shown in Fig. 2, to achieve a better tradeoff between flexibility

and hardware complexity. In this model, FPGAs are reconfig-

ured at the frame level, i.e., the frame is the atomic reconfig-

uration unit. Table I shows the number of frames required by

various on-chip resources in Virtex XV50 FPGA. The recon-

figuration of a frame does not disturb the execution of other

frames. A task may reuse a configuration pattern left behind

by an earlier task. Only one frame may be reconfigured at a

time. Each ready task needs to be loaded into contiguous frames

in the FPGA reconfiguration memory before its execution. For

each frame, the task has a specific configuration pattern. If the

required configuration pattern cannot be found in the corre-

sponding frame in the FPGA, a pattern miss is said to occur.

FPGA configuration storage areas are analogous to memory

caches in computers: Compulsory, conflict, and capacity misses

can also occur in the reconfiguration memory of FPGAs.

The power consumption of FPGAs may be divided into two

categories: execution power and reconfiguration power. Esti-

mating FPGA execution power consumption is similar to ASIC

power analysis. Inside FPGAs, the logic cells and interconnect

fabric have very regular structures. Therefore, the capacitance

of each individual reconfigurable component can be determined

[47]. Capacitance and timing information can be extracted from

a low-level specification or implementation. Combining this

information with real-delay timing simulation [47]–[49], which

is used to characterize switching activity, allows the execution

power of FPGAs to be predicted with high accuracy. For frame-

level dynamically reconfigurable FPGAs [19], reconfiguration

power is proportional to configuration frequency.

The following example provides some insight into the per-

formance, power consumption, and energy consumption conse-

quences of using dynamically reconfigurable FPGAs. Using the

Xilinx Virtex XVC1000 FPGA, a 32-bit multiplier using par-

allel adders requires approximately 1600 CLBs. It functions at

50 MHz, and the power consumption is approximately 430 mW.

Although many FPGAs contain built-in multipliers, we have

used a multiplier in this example to illustrate the challenge

of runtime reconfiguration with a commonly understood func-

tional unit. Note that Virtex FPGAs only support 1-D frame-

based reconfiguration. Therefore, all of the CLBs in seven

columns must be configured together, even if only a subset is

used. The Virtex XVC1000 contains 72 × 108 CLBs. Even

assuming all the 72 CLBs in each column are used, which is

typically not the case, ⌈1600/72⌉ = 23 columns are required.

Each CLB column requires at least 48 frames, and each frame

contains 1376 configuration bits. Therefore, it is necessary to

transmit more than 1.52 million configuration bits. Using the

SelectMap reconfiguration interface with the highest config-

uration throughput, i.e., 400 Mb/s, still requires 3.6 ms of

configuration time. Configuring the whole FPGA pushes the

configuration time to 18 ms. The power consumption during

reconfiguration is approximately 250 mW. Thus, it is clearly

critical to minimize configuration overhead by using partial

reconfiguration, reusing configuration frames, and prefetching

frames, etc.

The following parameters are defined for each dynamically

reconfigurable FPGA in the resource library: price, number

of configuration frames, reconfiguration bandwidth, number

of reconfiguration bits for each frame, number of inputs/

outputs, idle power, and reconfiguration power per frame. For

each task, the worst-case execution time, average power con-

sumption, and memory requirement to store reconfiguration and

computation data on each FPGA type in the resource library

are specified.

• Communication resources: Communication resources

connect PEs to each other. Each communication resource

is described by a price, packet size, average energy con-

sumption per packet, worst-case communication time per

packet, idle power consumption, and contact count. Con-

tact count is the number of PEs to which a communica-

tion resource is capable of connecting. Communication

resources are sequential resources: Only one pair of com-

municating PEs may use a communication resource at a

time. Busses (to minimize price) and point-to-point links

(to minimize communication contention) are supported.

The communication network is heterogeneous. However,

bus segmentation is not modeled.

• Memory: Our memory model assigns each memory block

a price and capacity. The memory requirements for

computation and communication are specified for each

task type.

C. Target Architecture

We assume a target architecture composed of computation

and storage elements, e.g., processors, FPGAs, and memory

modules. These devices are connected by an arbitrary topology

network of communication resources, i.e., the processors and

FPGAs are nodes, and communication resources are (hyper)

edges in a hypergraph. Instruction processor and FPGA memo-

ries are not shared, i.e., communication is explicit. To guarantee

that all hard real-time deadlines are met, we generate a system-

wide schedule at synthesis time. Therefore, devices must be

prevented from starting the execution of tasks too early. This

can be accomplished by using a global controller that signals

PEs at the appropriate times or by simple local timing logic,

such as counters, which may be synchronized using a global

signal. Note that fine-grained synchronization among PEs is not
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TABLE I
CONFIGURATION FRAMES IN VIRTEX XV50

necessary. A low-frequency synchronization clock can be used

by adding the duration of the worst-case discretization error

(the synchronization period) to task execution times.

D. Optimization Terms

Our tool, SLOPES, determines the following portions of

an embedded system architecture in an attempt to meet the

specified timing constraints while minimizing price and av-

erage power consumption: PE and communication resource

allocations, communication resource connectivity, assignments

of tasks and communication events to resources, and sched-

ules of tasks and communication events. A PE/communication

resource allocation is the number of each type of general-

purpose processor and FPGA/communication resource in an

architecture. Task/communication event assignment indicates

the PE or communication resource upon which each task or

communication event is executed. Communication resource

connectivity indicates the PEs to which each communication

resource is connected. In addition, SLOPES generates a sched-

ule for the tasks assigned to each PE and the communication

events assigned to each communication resource. Resource

contention is explicitly modeled. A static schedule based on

worst-case execution times and communication times is used

to determine whether all tasks meet their deadlines. When

tasks are executed on general-purpose processors, memory is

required for instructions and data. Similarly, FPGAs require

memory to store configurations and data. SLOPES accounts for

these requirements when computing an architecture’s price and

average power consumption.

An architecture’s cost set characterizes the quality of the

architecture. A cost set contains the number of tasks that could

not be scheduled within the system hyperperiod, the number

of communication events that could not be scheduled within

the system hyperperiod, the degree to which the specification’s

task deadlines were violated, the degree to which FPGAs were

overused (overallocated), as well as the price and average power

consumption of the system architecture.

E. Energy Minimization

The energy consumption of the synthesized system is mini-

mized throughout the synthesis process. Allocation/assignment

determine a power/energy-efficient system architecture. Note

that, for each computation/communication task, using differ-

ent resources results in different power/energy consumption

values. Our scheduler minimizes the schedule length to make

power/energy-efficient solutions feasible and minimizes the

average reconfiguration energy consumption.

PE static and dynamic power dissipation, communication

resource power dissipation, and FPGA reconfiguration power

consumption are considered; the energy impact of resource

allocation, assignment of tasks to PEs, assignment of commu-

nication events to communication resources, and scheduling

is calculated, allowing appropriate global decisions for energy

consumption minimization.

In addition to using energy consumption to guide the global

optimization algorithm when changing solutions, energy-aware

heuristics are used in a number of stages within the optimization

algorithm to increase the probability that high-quality solutions

will be provided to multiobjective Boltzmann trials for selec-

tion. For example, the relative energy consumption and perfor-

mance of tasks executing on the available PEs is used to guide

task assignment. Note that these heuristics are not necessary

to ensure high solution quality. However, they accelerate the

global optimization algorithm by focusing exploration on the

most promising areas of the solution space, allowing higher

solution quality for a given amount of optimization time.

The task/PE and communication resource energy consump-

tion models are general and easily customizable. The FPGA

power model was briefly introduced in Section II-B. Note that

the process of generating these models is beyond the scope of

this paper but may be found in other works [47], [50], [51].

III. HARDWARE–SOFTWARE COSYNTHESIS OVERVIEW

The hardware–software cosynthesis problem is hard; large

instances have only been solved using potentially suboptimal

heuristics. This section explains the reasons for using a parallel

recombinative simulated annealing algorithm [52] for synthesis

in SLOPES. In addition, we describe this optimization in-

frastructure. The curious reader is directed to the literature for

a more detailed introduction to multiobjective optimization of

heterogeneous distributed systems, a more complete survey of

the hardware–software cosynthesis research area, and a tutorial

on its relationship with search and optimization [40].

The hardware–software cosynthesis problem is composed

of multiple interdependent NP-complete problems. The

allocation/assignment problem and the scheduling problem are

both known to be NP-complete [37]. To our knowledge,

all existing optimal hardware–software cosynthesis algorithms

solve a constrained version of the problem (e.g., one-CPU one-

ASIC systems [53]–[56]) or face insurmountable performance

degradation when run on large problem instances; although

useful for small problem instances, optimal solvers are not

capable of tackling large problem instances, e.g., those con-

taining more than ten or so tasks [28], [29]. Existing hardware

software cosynthesis systems capable of handling large in-

stances of the general heterogeneous system synthesis problem

rely on potentially suboptimal heuristics [25], [57], [58]. The

optimization infrastructure used by SLOPES falls in this class:

It does not guarantee optimality. However, as we will describe

in the following section, for problem instances to which optimal

solutions are known, the optimization infrastructure used by

SLOPES also arrives at optimal solutions.
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A. Optimization Infrastructure Design Considerations

SLOPES requires an optimization infrastructure with the

following attributes: 1) fast enough to solve large problem

instances, 2) well suited to solving multiobjective problems,

3) capable of using problem-specific information to accelerate

optimization, and 4) capable of finding optimal or near-optimal

solutions.

As noted above, the hardware–software cosynthesis problem

requires multiple NP-complete problems to be solved. In prac-

tice, guaranteed optimal solvers for this problem domain are

capable of handling only small problem instances. Therefore,

we ruled out the use of guaranteed optimal algorithms. Iterative

improvement algorithms that maintain a pool of solutions, e.g.,

genetic algorithms, meet the second requirement. However,

variants of more commonly used algorithms, e.g., simulated an-

nealing, in which a pool of solutions simultaneously exist, can

also be used to solve multiobjective problems. We ultimately

implemented an optimization infrastructure based on genetic

algorithms and simulated annealing that avoids reevaluating

solutions it has previously encountered. It was straightforward

to incorporate problem-specific heuristics into this algorithm

by adding intelligence to the operators that change solutions.

Note that, although we used heuristics to guide changes, we

chose to make this guidance stochastic to avoid constraining

the region of the solution space the algorithm is capable of

exploring.

To test the quality of our evolutionary hardware–software

cosynthesis algorithm, we compared it [38], [40] with a number

of other algorithms, e.g., constructive, iterative improvement,

MILP, and simulated annealing algorithms. For the problem

instances that are small enough for optimal algorithms to solve

(e.g., MILP [28]), our optimization infrastructure also arrives at

optimal solutions, often in orders of magnitude less CPU time.

When run on larger problem instances previously tackled by

constructive [21] and iterative improvement algorithms [59], in

all cases, our optimization infrastructure produces results that

are as good as, and frequently better than, prior work. Our

runtimes are either better (by up to four orders of magnitude) or

low enough to render differences unimportant (CPU seconds).

See Section V-B for more details.

B. Evolutionary Algorithm

In this section, we describe the evolutionary algorithm used

by SLOPES to optimize resource allocations, task and commu-

nication event assignments, as well as communication resource

connectivities.

A genetic algorithm maintains a pool of solutions that evolve

in parallel over time. During each generation, genetic operators

that allow randomized local changes, and the exchange of

information between solutions, are applied to the solutions in

the current pool to improve them. The lowest quality solutions

are then removed from the pool [60].

In an iterative improvement algorithm, we define greediness

as the probability that a cost-decreasing change to a solution

will be preferred instead of a cost-increasing change. Simulated

annealing algorithms are iterative improvement algorithms in

which greediness increases during the run of the algorithm [61].

Fig. 3. Hardware–software cosynthesis overview.

Parallel recombinative simulated annealing (PRSA) algo-

rithms [52] have some of the best attributes of both genetic

algorithms and simulated annealing algorithms [52]. This class

of algorithms is best understood to contain genetic algorithms

that use Boltzmann trials between modified and existing solu-

tions to select the solutions that will exist in the next generation.

The greediness of a PRSA algorithm starts low and increases

during an optimization run, allowing it to escape local minima

in a fashion similar to simulated annealing. SLOPES uses a

PRSA optimization algorithm. Moreover, it is a Pareto-rank-

based multiobjective optimization algorithm [62], as described

in Section III-D.

An overview of our cosynthesis system is shown in Fig. 3.

Cosynthesis solutions are organized in clusters. Solutions

within a cluster share the same allocation of hardware resources

but have different assignments of tasks to resources. At the

start of the algorithm’s run, solutions are initialized. Then,

evolution operators, i.e., reproduction, mutation, and crossover,

are used to transform allocations and assignments, producing

the next generation of solutions. Within each cluster, the assign-

ment information may be mutated or traded between different

solutions. Allocation information may be mutated or traded

between different clusters. The ranks of solutions are deter-

mined using Pareto ranking in a multidimensional space within

which system price, average power consumption, and other

costs are dimensions. A solution’s rank is equal to the number

of other solutions that do not dominate it, i.e., a solution

dominates another if it is better in both average power con-

sumption and system price. When a prespecified number of

generations has passed without improvement, invalid solutions,

i.e., those that do not meet the deadlines, are pruned out, and the

remaining nondominated solutions are reported to the system

designer (the concept of domination is defined in Section III-D).

C. Mutation and Crossover

Mutation makes randomized local changes to an architec-

ture. When an architecture mutates, SLOPES first determines

whether the task assignment or communication resource con-

nectivity will mutate. A random variable w between 0 and the
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average number of contacts of a communication resource is

selected. If w is greater than 1, the task assignment mutates;

otherwise, the communication resource connectivity mutates.

t_count is the number of tasks in the embedded system speci-

fication multiplied by the global temperature. Task assignment

mutation causes a randomly selected set of t_count tasks to be

reassigned to randomly selected PEs. c_count is the number of

communication resources in the architecture multiplied by the

global temperature. Communication resource connectivity mu-

tation causes c_count communication resources to disconnect

all of their contacts and randomly reconnect them to PEs.

When a cluster mutates, SLOPES first determines whether

the PE allocation or communication resource allocation will

mutate. A random variable x between 0 and the average number

of contacts on a communication resource is selected. If x is

greater than 1, the PE allocation mutates; otherwise, the com-

munication resource allocation mutates. Cluster mutation may

cause an instance of a randomly selected PE type to be added to

all the architectures in the cluster, or it may cause a randomly

selected PE to be removed from all the architectures in the

cluster. The probability of an additive mutation is related to the

global temperature maintained by SLOPES and varies from 1

to 0 during the run of the algorithm. All of the architectures in

the cluster randomly change the parts of their task assignments

and communication resource connectivities that depend on the

lost PE such that none of the tasks or communication resources

depend on the lost PE. Communication resource allocation

mutation is analogous to PE allocation mutation.

Crossover is the process of trading or swapping information

between two architectures. Crossover may be applied to PE

allocations, communication resource allocations, task assign-

ments, and link connectivities. During crossover, a portion

of the information is swapped between the pair of solutions.

The method of selecting the traded information is a matter of

some importance in evolutionary algorithm design. However, it

appears in other work [40] and has been omitted from this paper

for the sake of brevity.

D. Ranking and Reproduction

In this section, we explain the Pareto ranking method of

imposing a partial order on solution quality. Pareto ranking has

a number of interesting properties elaborated on in the literature

[38], [62].

The number of clusters and solutions maintained by SLOPES

is conserved during one run of the algorithm. For each cluster

or solution created via reproduction, another is eliminated. The

number of solutions and clusters maintained during a run can

be chosen at the start of the run. We typically use 20 clusters,

each of which contains 20 solutions.

A solution dominates another if some of its features are

equal and others (at least one) are better, i.e., given costs

a1, a2, . . . , an for solution a and costs b1, b2, . . . , bn for solu-

tion b, a dominates b (dom(a, b) = 1) if and only if

∀n
i=1ai ≤ bi ∧ ∃n

j=1aj 
= bj . (1)

A solution’s Pareto rank is the number of other solutions, in

the solution pool, that do not dominate it. Given a solution

Fig. 4. Pareto rank.

pool of size p, calculating Pareto rank is an O(p2) operation;

each solution must be compared with every other solution. In

Fig. 4, each circle represents a solution. Each solution’s price

and average power consumption are indicated by the position

of its circle in the graph. The number in each circle indicates

the Pareto rank of the associated solution.

Ranking clusters is more complicated than ranking solu-

tions. Each solution has one set of costs. Thus, determin-

ing whether it dominates another solution is straightforward.

Clusters, however, contain numerous solutions; each cluster is

associated with many sets of costs. We extend the concept of

domination to take partial domination into account. Cluster

domination, cdom, is represented by a scalar instead of a

Boolean value. The definition of rank must also be adjusted

when it is applied to clusters. A noninferior solution is one

that is not dominated by any other solution. Let x and y
be clusters. nis(x) is the set of noninferior solutions in x.

dom(a, b) is 1 if a is not dominated by b and 0 otherwise. cdom

is a function of two clusters, i.e.,

cdom(x, y) = max
a∈nis(x)

∑

b∈nis(y)

dom(a, b) (2)

and

rank[x] =
∑

y∈all clusters, y 
=x

cdom(x, y). (3)

Once cluster ranks have been determined, cluster reproduction

is analogous to solution reproduction. A prespecified number

of clusters is removed to make room for high-rank clusters to

reproduce. Clusters are selected for reproduction in the same

manner as solutions. Cluster crossover and mutation are also

analogous to solution crossover and mutation.

After cluster reproduction, mutation, and crossover, SLOPES

ranks all clusters relative to each other. Every architecture in

the system is ranked relative to every other architecture, as

described above. Each cluster’s rank is the sum of the ranks

of the architectures contained within it.

E. Boltzmann Trials

Given two ranks J and K and the global temperature T ,

a Boltzmann trial preserves the architecture associated with
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Fig. 5. Optimization process of our evolutionary algorithm.

J and eliminates the architecture associated with K with

probability

1

1 + e(K−J)/T
. (4)

After ranking architectures, SLOPES conducts interarchitecture

Boltzmann trials between randomly selected pairs of architec-

tures within a cluster, eliminating the loser, until the cluster

contains the same number of architectures as it did before

reproduction. Intercluster Boltzmann trials are analogous

to interarchitecture Boltzmann trials. The use of a global

temperature-dependent criterion for eliminating solutions

allows SLOPES to escape local minima early in its run while

the global temperature is still high. As the global temperature

decreases, SLOPES becomes increasingly greedy.

After reproduction, crossover and mutation are carried out on

the solutions that were copied. The number of crossovers and

mutations per generation, for each type of string, is specified

by user-defined parameters. Crossover is applied to solution

pairs that are randomly selected from the solutions created

by reproduction. Mutation is applied to solutions that are also

randomly selected from the solutions created by reproduction.

F. Evolutionary Optimization Demonstration

We demonstrate the optimization process of our evolutionary

algorithm with a set of system-level specifications generated

by task graphs for free (TGFF) [63], a structured random task

graph generator. The characteristics of the processors, memory

blocks, and communication resources were taken from past

work, publicly available examples [63], and various bench-

marks [64]. The dynamically reconfigurable FPGA model is

based on Xilinx Virtex-E FPGAs [19].

Fig. 5 traces an example system synthesis and optimization

run. Typically, the evolutionary algorithm maintains hundreds

of solutions in the solution pool. For simplicity, we only show

a subset of the solutions in this figure, in which squares denote

valid solutions for which hard deadlines are all met. Crosses

depict invalid solutions, in which some hard deadlines are

not met. The initial solutions are shown in Fig. 5(a). Then,

from Fig. 5(b)–(e), during each generation, new solutions are

produced, and good solutions are kept. The final solutions are

shown in Fig. 5(f). These solutions are all valid and nondomi-

nated. The optimization algorithm moves solutions toward the

Pareto-optimal curve. System designers can choose the desired

solution based on the relative importance of different costs in

their target applications, i.e., average power consumption and

system price. It is sometimes best to defer this decision until

the end of the optimization run, at which time the available

tradeoffs between costs are known.

IV. SCHEDULING ALGORITHMS

The scheduling algorithm is invoked in the inner loop of

cosynthesis, in a cycle with evolutionary changes to allocation

and assignment. Tasks and communication events need to be
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Fig. 6. Task graphs.

TABLE II
ALLOCATION AND ASSIGNMENT INFORMATION

TABLE III
TASK EXECUTION (IN MICROSECONDS)

scheduled on different processors, FPGAs, and communication

resources. Processors and communication resources must be

used sequentially. Therefore, each has a 1-D schedule. How-

ever, scheduling for dynamically reconfigurable FPGAs is a

2-D problem: FPGA schedules span both time and space.

A. Motivational Example

We next present an example to introduce and illustrate our

scheduling algorithm.

Example 1: Consider a system specification with the three

example task graphs shown in Fig. 6. The allocation and

assignment information for each task and communication event

is shown in Table II. Tasks 1_0 and 3_1 have the same con-

figuration patterns, whereas the configuration patterns for other

tasks differ. The reconfiguration time for each frame is 3.4 µs.

Based on the allocated PEs, the worst-case execution time for

each task is shown in Table III. The communication events

C3_1 and C2_0 are executed on the bus that links the three PEs.

We explicitly model contention for shared communication re-

sources. The communication event durations are 15 and 10 µs,

respectively. We follow the traditional assumption in distributed

computing that communication between tasks assigned to the

same PE takes negligible time. Two different scheduling ap-

proaches are applied to these task graphs, as will be described

later. The first approach is based on prior work, and the second

is our proposed approach.

Scheduling Approach I: The scheduling sequence, i.e., the

order in which tasks are scheduled, is based on static slack-

based priority [21]. Task i’s priority is given by

Pi = −(LSTi − ESTi) (5)

where LSTi is the latest start time of task i, and ESTi is its ear-

liest start time. These two values are computed by conducting

forward and reverse topological sorts of the task graphs starting

from both the source and sink nodes.

Configuration patterns may be loaded into the FPGA before

the task ready time, in a process analogous to cache prefetching.

Configuration patterns remaining after the execution of earlier

tasks may be used by later tasks. If there are several candidate

positions in the FPGA where a task may be placed, the heuristic

finds a position that allows the task to start as soon as possible.

This location assignment policy is similar to the greedy heuris-

tic proposed in [4].

Table IV (first row) shows the schedule length, reconfigura-

tion resource utilization (lower is better), and reconfiguration

power/energy consumption. The deadline is violated in this

case. Fig. 7 shows the FPGA, processor, and bus schedules. The

shaded blocks represent framewise reconfiguration. Reconfigu-

rations caused by compulsory misses are not shown, as they

occur only once in the beginning of the first hyperperiod. The

numbers in brackets indicate the sequence in which the tasks

are scheduled.

Scheduling Approach II: The scheduling sequence is de-

termined dynamically by task priorities that consider both real-

time constraints and frame-by-frame reconfiguration overhead

information (see Section IV-B for additional details).

When deciding the location in the FPGA at which a task

will be executed, the global reconfiguration information for

all the tasks assigned to the FPGA and the FPGA’s current

configuration are considered. Table IV (second row) and Fig. 8

indicate the schedule quality for this approach.

From the above example, we find, not surprisingly, that

different FPGA scheduling policies may dramatically influence

the schedule quality, i.e., the satisfaction of real-time con-

straints, reconfiguration resource utilization, and reconfigu-

ration energy consumption. First, since reconfiguration itself

consumes a significant amount of energy, minimizing recon-

figuration overhead is important for reducing system energy

consumption. Second, solutions that cannot satisfy real-time

constraints necessitate faster (and generally more expensive)

PEs. This increases system price. A good scheduling ap-

proach indirectly reduces system price and average power

consumption.

B. 2-D FPGA Scheduling Algorithm

In this section, we describe our 2-D scheduling algorithm for

dynamically reconfigurable FPGAs. Scheduling sequence and

location assignment are the most important problems solved

during scheduling.

Scheduling Sequence: As in Approach I in Example 1, static

slack-based priorities are commonly used to order tasks for

scheduling on processors. The intuitive idea behind this ap-

proach is that a task with more slack can tolerate some delay

and should yield to another task with less slack. This approach

works well for sequential resources. However, it is not suitable

for FPGAs, which can execute multiple tasks concurrently. In

the static slack-based priority approach, tasks along the critical

path of one task graph might always be scheduled before tasks
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TABLE IV
SCHEDULING RESULTS

Fig. 7. Scheduling result for Approach I.

in other task graphs. This can be suboptimal for FPGAs. Our

experimental results show that interleaving the execution of

tasks from different graphs on FPGAs leads to better global

schedules by allowing additional opportunities for amortizing

reconfiguration overhead over multiple tasks.

Another difference between processors and FPGAs is that

in FPGAs, reconfiguration degrades performance and increases

energy consumption. Hence, to reduce the reconfiguration over-

head, the ready tasks that require configuration patterns already

residing in an FPGA should be preferred. This means that the

reconfiguration overhead should also influence task priority. We

propose a dynamic priority-based approach, which dynamically

updates task i’s priority, i.e., pi, as follows:

pi = −LFTi + di + ri − rij (6)

where LFTi is the latest possible finish time for task i, which

is computed by conducting a backward topological sort of

the task graph based on the deadline information. di is the

worst-case execution time for task i on the PE to which it is

assigned. ri is the reconfiguration overhead for task i. rij is

the intertask reconfiguration time between adjacent tasks i and

j. rij equals 0 if these two tasks share the same configuration

pattern. This approach considers both the real-time constraints

and reconfiguration overhead. Moreover, tasks from different

task graphs are treated fairly.

Location Assignment Policy: When a task is selected using

the above approach, multiple candidate locations may exist

in the FPGA. The location assignment policy for a task influ-

ences the scheduling results for other tasks, as well as those of

Fig. 8. Scheduling result for Approach II.

the current task. Several factors need to be considered in this

context.

• Reconfiguration prefetch: Each task needs to be loaded

into the FPGA before execution. When a task’s imple-

mentation is large, the reconfiguration overhead may be

substantial even in dynamically reconfigurable FPGAs.

Reconfiguration prefetch can be used to alleviate this

problem. The system can try loading the task earlier and

finish reconfiguration before the ready time of the task.

This may allow the reconfiguration time for the task to

be hidden.

• Configuration pattern reuse: When a new task needs to

be loaded into an FPGA, its configuration patterns must

be mapped into a set of contiguous frames. If subsets of

the requisite configuration patterns already reside in the

FPGA, loading them can be avoided. This helps reduce

reconfiguration overhead.

• Eviction candidate: If an FPGA has insufficient free space

for a new configuration pattern, resident configuration

patterns must be evicted from the device. This problem

is similar to the paging problem [65] and the weighted

caching problem [66]. However, for our problem, all the

frames assigned to a task need to be contiguous, further

increasing the complexity of the problem. The frames

that need to be reconfigured for the incoming task may

contain configuration patterns from different tasks, each

executing at a different relative frequency (the number of

times the task executes in the system hyperperiod). When

a configuration pattern with a higher relative frequency is

evicted, this may result in additional reconfiguration over-

head later in the hyperperiod. We define the eviction cost
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Fig. 9. Task scheduling example.

for a candidate position for this task to be a weighted sum

of all the configuration patterns that need to be replaced,

as follows:

eviction_cost =

end_frame
∑

i=start_frame

recurrent_freqframei
(7)

where recurrent_freqframei
is the recurrent frequency of

the configuration pattern in framei. The eviction_cost

is the weighted cost for this candidate position. The

candidate positions with lower eviction_cost should be

preferred.

• Fitting policy: The algorithm should try to avoid fragmen-

tation of the FPGA configuration memory when choosing

the candidate position from the FPGA.

• Slack utilization: Some of the possible candidate positions

for a ready task may already have configuration patterns

similar to the newly required ones. Using these positions

lowers the eviction costs. However, tasks may not be

able to start execution immediately if assigned to such

candidate positions. A greedy policy may neglect such

candidate positions, adversely impacting the schedule

quality for other tasks because reconfiguration hardware is

a sequential resource. Reconfiguration of one frame delays

reconfiguration of others. Therefore, reconfiguration

overhead minimization should have a high priority. Thus,

it is sometimes necessary to make a suboptimal local

scheduling decision for a task to allow a better global

system schedule. The slack of a task indicates the extent to

which an inferior scheduling result for it can be tolerated.

Since the task may share slack with other tasks that have

not yet been scheduled, slack should be conserved when

possible. The portion of the slack allocated to a given task

is its slack divided by the depth, i.e., the longest path, of

the subtask graph (the root vertex of the subtask graph is

the current task), as follows:

tolerate_start_timej = start_timej +
slacktaskj

depthsub_graph

(8)

• where start_timej is the ready time of taskj ,

depthsub_graph is the depth of the subtask graph in terms

of the number of tasks, and slacktaskj
is the slack of taskj .

Tolerate_start_timej is the latest delayed start time that

taskj can tolerate.

Our FPGA location selection policy is based on the above

analysis. The influence of reconfiguration overhead on the

start time of each task is minimized. Candidate positions with

lower weighted reconfiguration overhead and tolerable delay

are always chosen. Reconfiguration data can be effectively

shared among tasks with similar reconfiguration patterns. The

reconfiguration overhead is, therefore, effectively reduced and

sometimes hidden. This approach also minimizes reconfigura-

tion energy consumption, which is a significant portion of the

energy consumption in FPGAs.

Algorithm: The pseudocode for the 2-D scheduling algo-

rithm is shown in Algorithm 1. First, root nodes from all the task

graphs are put into the candidate pool (line 1). The priority of

each task in the candidate pool is updated dynamically (line 3),

and the task, i.e., taski, with the highest priority is chosen (line

4). Since the parent tasks of taski may be assigned to PEs other

than taski, the corresponding communication events need to be

scheduled on the communication resource first (line 5). Then,

taski is scheduled on the candidate PE (line 6). Finally, schedul-

ing taski leads to other tasks becoming ready (line 7). The key

part of the scheduling algorithm is schedule_task(taski),

Algorithm 1 Scheduling_algorithm():

1: candidate_pool ← root_nodes

2: while pending_tasks 
= ∅ do

3: priority_calculation(candidate_pool)

4: taski ← extract(candidate pool)
{task with the highest priority}

5: sched_input_communication(taski)
6: schedule_task (taski)
7: candidate_pool ← introduce_ready_task(taski)
8: end while

Consider task C in the partial FPGA schedule shown in

Fig. 9. When this task is being loaded into the FPGA, the

reconfiguration overhead may be introduced before and/or after

the task, shown as shaded blocks.

Two issues need to be considered for the reconfiguration

blocks introduced before task C. First, the time spans of the

empty slots in the different frames among the possible candi-

date positions for task C may differ. Since the reconfiguration

hardware is a sequential resource, reconfiguration of one frame

will delay the reconfiguration of other frames and even the

start time of the task. Second, the reconfiguration slots left

unused between the reconfiguration events and task C cannot

be used by tasks with different configuration patterns. We define
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Pframei
, i.e., the priority used to determine the reconfiguration

sequence of frames, as follows:

Pframei
=











−(r_ttask − s_tframei
)

−(hyperperiod − s_tframei
+ r_ttask)

r_ttask = ready_timetask modulo hyperperiod

s_tframei
= start_timeframei

modulo hyperperiod
(9)

where r_ttask ≥ s_tframei
, r_ttask < s_tframei

, and

start_timeframei
is the start time of the empty time slot in

framei. If the duration between the reconfiguration slot start

time and the task ready time is short, reconfiguration of the

corresponding frame needs to be scheduled first. Otherwise,

reconfiguration may not be completed before the task ready

time and the task may be delayed. The reconfiguration

slots in each frame are scheduled before the ready task in

order of decreasing priority. To hide the reconfiguration

overhead whenever possible, a function called schedule_back()

is used. This function looks backward for the first available

reconfiguration slot from r_ttask to s_tframei
in the current

frame. If the function returns false, this indicates that

reconfiguration cannot start during the interval [s_tframei
,

r_ttask]. In this case, another function, i.e., schedule_front(), is

invoked. This function locates the first available reconfiguration

slot in the current frame from r_ttask to the finish time of the

empty time span. With this approach, reconfiguration events

are scheduled as soon as possible before the task ready time

and as closely as possible to the task to allow a good fit and,

therefore, high slack utilization. In Fig. 9, before candidate

task C, frames 8 and 9 are scheduled first, then frames 0–3.

We next discuss the issues involved in scheduling reconfigu-

ration slots after the task. To leave enough flexibility for future

tasks, the reconfiguration slots need to be placed as close to the

next task as possible. In addition, a scheduling order priority

must be determined for all the necessary frames, in accordance

with their relationships, as follows:

Pframei
=











−(f_tframei
− r_task)

−(hyperperiod − r_ttask + f_tframei
)

r_ttask = ready_timetask modulo hyperperiod

f_tframei
=finish_timeframei

modulo hyperperiod
(10)

where f_tframei
≥ r_ttask, f_tframei

< r_ttask, and

finish_timeframei
is the finish time of the empty time

span in framei. The schedule_back() function is called for

each frame in a nonincreasing priority order. It chooses

the first available reconfiguration slot from f_tframei
to

r_ttask in the current frame. With this approach, in Fig. 9, in

frames 0–3, the reconfiguration slots after task C are scheduled

close to task A (note that tasks repeat after the hyperperiod). In

frames 8 and 9, the reconfiguration slots are scheduled close to

task B.

The schedule_task(taski) function contains two steps. First,

candidate_position_sort(taski) calculates the priority of each

candidate position. Its pseudocode is shown in Algorithm 2. In

lines 2–6, the algorithm calculates the priorities of the frames

in each candidate position. Then, for each candidate position,

it schedules reconfiguration slots before the task based on

the frame priorities (lines 7–10). From all the frames in this

candidate position, it chooses the latest reconfiguration finish

time as the actual task ready time for this position. Then, it uses

the location assignment policy described earlier in this section

to calculate the priority of each candidate position (line 11).

Second, function schedule_task_p(taski) is invoked to schedule

the task. Its pseudocode is shown in Algorithm 3. The candidate

position with the highest priority is chosen from the candi-

date_position_pool (line 2). The reconfiguration slots before the

task are first scheduled (line 3), followed by the reconfiguration

slots after the task (line 4). Finally, the task itself is inserted into

the schedule (line 5). If any of these three steps fails, the frame

at which the failure occurs is chosen. Starting from this time

slot, the next time slot is located, and a new priority is calculated

based on this frame (line 7). The candidate position is inserted

into the priority queue at the appropriate location (line 8), and

a new candidate position is chosen to attempt scheduling of the

task (line 9).

Algorithm 2 Candidate_position_sort(taski)
1: for i ∈ {0 · · · num_candidate_positions − 1} do

2: for j ∈ {position_starti · · · position_finishi} do

3: slotj ← candidate_time_slot find()
4: slot_priorityi ← slot_priority_calculation(slotj)
5: slot_priority_pli.insert(slot_priorityi)
6: end for

7: for j ∈ {slot_priority_pli.begin · · ·
slot_priority_pli.end − 1} do

8: if reconfig_framei = false then

9: schedule_reconfig()

10: end if

11: update_position_priority(candidate_positioni)
12: end for

13: end for

Algorithm 3 Schedule_task_p(taski)
1: while candidate_position_pool 
= ∅ do

2: candidate_position ← extract(candidate_position_pool)
3: stage1_flag ← schedule_reconfig_before_task(taski)
4: stage2_flag ← schedule_reconfig_after_task(taski)
5: stage3_flag ← schedule_task_exec(taski)
6: if stage1_flag or stage2_flag or stage3_flag then

7: calculate_priority(candidate_position.next_slot())
8: candidate_position_pool.insert(candidate_position)
9: next_candidate_position_chosen()
10: end if

11: end while

Complexity Analysis: For the FPGA scheduling algorithm,

assuming an O(n log n) sorting algorithm, the time complexity

is O(MKn2 log n), where M is the FPGA size, K is the

average number of frames required by a task, and n is the

number of tasks. However, on average, for the specifications on

which we ran it, the algorithm behaves like an O(MKn log n)
algorithm because it usually finds a feasible reconfiguration slot

early in the candidate pool. Note that our implementation uses
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quicksort instead of anO(n log n) sorting algorithm because its

average-case performance is superior.

Scheduling Algorithms for Other Resources: FPGA schedul-

ing is compatible with scheduling for processors and com-

munication resources. We use the same approach to schedule

tasks and communication events on different processors and

communication resources by setting reconfiguration times to 0

and using only one frame for each device. In other words, we

revert to a 1-D scheduler for processors and communication

resources. Intertask data dependences are used to coordinate

the schedules of tasks and communication events in different

computation and communication resources.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results for our

hardware–software cosynthesis system. We first compare the

proposed multidimensional scheduler for partially dynami-

cally reconfigurable hardware with existing techniques that do

not support partial reconfiguration (see Section V-A). Next,

we compare the underlying distributed heterogeneous dis-

tributed system synthesis algorithm with related work (see

Section V-B). Finally, in Section V-C, we present the results of

using the proposed algorithm to synthesize hardware–software

systems containing partially dynamically reconfigurable logic.

A. Scheduling Algorithm for Partially Reconfigurable

Hardware

The system is implemented in C++. The resource library

consists of various system resources available from the industry

and academia. We use processors, memory blocks, and com-

munication resources provided in previous work [63] as well

as publicly available benchmarks [64]. The parameters of our

dynamically reconfigurable FPGA model are based on Xilinx

Virtex-E FPGAs [19]. We use the SelectMAP reconfiguration

mode, i.e., a bidirectional parallel interface.

The writing reconfiguration time for task i, i.e., ri, is

estimated based on the number of configuration frames

(N_framesi) used by each task, the frame size (M_bits), the

width of the configuration interface (K_bits), which is 8 bits,

and the configuration frequency f , as follows:

ri = N_framesi ×M_bits/(K_bits × f) + C (11)

where C is a constant overhead due to initial synchronization

and setting of the address and other configuration registers.

The first ten sets of example task graphs, which are input

to the cosynthesis system, were generated by TGFF [63]. The

next two are based on digital signal processing examples from

the literature [67], [68]. An additional three benchmarks, for

telecommunication, automotive, and networking applications,

were obtained from E3S [64]. These last three were derived

from characterizations of a wide range of typical embedded

system tasks running on a large set of embedded processors and

microcontrollers available from the Embedded Microprocessor

Benchmarking Consortium (EEMBC) [69]. The benchmarks

provide performance information. Therefore, we know the

execution time of each task on each processor. We derived

power consumption and other information from data sheets

and conversations with processor manufacturers. Therefore, for

the current set of benchmarks, all tasks have the same power

consumption on a given processor. Note that our synthesis sys-

tem accepts performance and power consumption information

for each task type running on each processor type. Therefore,

task-specific power numbers may be used when EEMBC be-

gins to report them. For each task, FPGA power consump-

tion is linearly scaled from the power consumption in proces-

sors. All the experiments were performed on a Pentium-III

667-MHz PC with 512 MB of memory running the Linux oper-

ating system.

We first demonstrate the performance of our FPGA schedul-

ing algorithm. We compare the results of scheduling for

Approach I (Section IV-A), based on static slack-based pri-

ority, configuration prefetch, and preconfiguration utilization

[4], with our Approach II. The results are shown in Table V,

which includes schedule length, average reconfiguration power

consumption, and CPU time for the 15 examples described

above. Note that reconfiguration energy consumption is exactly

proportional to reconfiguration power consumption, i.e., the rel-

ative improvements are equivalent. Compared with Approach I,

the improvements in schedule length and average reconfigura-

tion power are shown in columns 4 and 7, respectively, and also

in Fig. 10, in which bars represent schedule length and lines

represent average reconfiguration power.

In contrast to Approach I, our algorithm always meets real-

time performance constraints. When using Approach I, only the

solutions for Examples 3, 5, and 9 meet real-time performance

constraints. The average reduction in schedule length is 34.3%,

and the average reduction in reconfiguration energy consump-

tion is 40.4%. Recall that reconfiguration energy consumption

is frequently as high as task energy consumption. Hence, it is

very important to reduce it. Reducing schedule length helps

the cosynthesis system choose lower cost (and potentially

slower) PEs without violating real-time constraints, thus reduc-

ing the system price. Although our approach improves average

reconfiguration power consumption in 13 examples, it increases

average power consumption for Example 9. In this example,

there are tight FPGA resource constraints. Therefore, little

flexibility remains for our scheduling algorithm to search for a

globally optimal solution. Since our approach may not choose

a locally optima solution for each task, it may at times get

a worse result than the greedier Approach I. In addition to

producing better results than Approach I for most problems,

our algorithm needs less runtime: 28.0% less on average. Our

algorithm predicts the needs of future tasks and makes it easier

to schedule them. Approach I is greedy and makes locally

optimal choices. Therefore, it needs more time to schedule tasks

encountered later.

B. Heterogeneous Distributed System Synthesis

To compare the allocation and assignment optimization al-

gorithm used in SLOPES with other work, we used it for

hardware–software cosynthesis of systems that do not contain

partially dynamically reconfigurable hardware.
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TABLE V
FPGA SCHEDULING RESULTS

Fig. 10. FPGA scheduling results.

Table VI shows the results of running the allocation and

assignment optimization algorithm on all of the P&P SOS ex-

amples [28]. The first column shows the names of the examples

and the performance constraints (i.e., deadlines). The second

column shows the prices of the solutions found by our opti-

mization algorithm. The other columns show the prices of the

solutions found by algorithms developed by other researchers.

The third column is for SOS, the P&P MILP algorithm [28].

This algorithm has the advantage of guaranteeing optimality.

However, its runtime increases dramatically with increasing

problem complexity. The fourth column is for COSYN, a

constructive algorithm [21]. The fifth column is for Oh and

Ha’s heuristic [27]. The P&P 2 〈5〉 and P&P 2 〈7〉 entries are

explained in the next few paragraphs.

The P&P examples contained no soft deadlines or power

information. Therefore, we ran our optimization algorithm in

single-objective price optimization mode. We used the same op-

timization parameters for each of these examples and for those

in the next section. A 1.4 GHz AMD Athlon Thunderbird CPU

was used to solve these problems. Each example took between

12 and 35 min of CPU time. Note that it is possible for our

optimization algorithm to produce good solutions to the simpler

P&P examples in significantly less than 12 min of CPU time.

However, we wanted to use the same optimization parameters

for all of the P&P examples, as well as all of the Hou and Wolf’s

examples (considered later). Therefore, we selected a solution

pool size and halting conditions sufficient for more complicated

problems, i.e., we granted the optimization algorithm more

CPU time than was necessary for simple problems so that

it would have good performance on complicated problems.

The dependence of our optimization algorithm’s CPU time

requirements upon problem complexity stands in contrast with
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TABLE VI
PRICES FOR THE PARAKASH AND PARKER EXAMPLES

the requirements of SOS. Although SOS took only 11 s of CPU

time, on a Solbourne Series5e/900 (similar to a SPARC 4/490),

for a simple problem, P&P 1 〈2.5〉, its runtime increased dra-

matically with increased problem complexity; it took 106.7 h

of CPU time for P&P 2 〈15〉. There is no particular problem

with taking a large amount of CPU time to solve a synthesis

problem well. However, dramatic increases in optimization

time with increasing problem complexity imply that an algo-

rithm may not halt in an acceptable amount of time for large

problems.

The P&P behavioral specifications are somewhat unconven-

tional. They contain tasks with precomputation and postcom-

putation. We implemented an extension to conventional task

graphs to precisely model this. Our model does vary from that

used by P&P in one way: Our point-to-point communication

links are bidirectional, and theirs are directed, i.e., they allow

communication to occur over a point-to-point link in only one

direction during the life of an embedded system. In our model,

communication via a point-to-point link can occur in either

direction, although only one communication event can be

carried by the point-to-point link at a time. This results in some

apparently unusual results for the P&P 2 〈5〉 and P&P 2 〈7〉
examples. Our slightly different model for point-to-point com-

munication links allows our algorithm to get lower prices than

SOS in a few instances. Although a price comparison is still

legitimate, it requires some explanation. We will now describe

the impact of this difference on the solutions to each of the

P&P examples.

None of the solutions produced by SOS for any of the

deadlines associated with the P&P 1 examples contain a pair of

point-to-point communication links that connect the same pair

of PEs and have different directions, i.e., back-to-back links.

Therefore, a bidirectional communication model will not allow

back-to-back links to be merged, thereby reducing price, in any

of these solutions. For every P&P 1 example, our optimization

algorithm arrived at a solution with the same price as SOS. The

P&P 3 example resource database does not contain directed

point-to-point communication links. As a result, the difference

in communication models has no impact on the results for this

example. Our optimization algorithm arrived at a solution with

the same price as SOS for every P&P 3 example.

The differing communication models had an impact on some

of the solutions to the P&P 2 examples. For the problems with

deadlines of five and seven, the optimal solutions produced

by SOS contain exactly one pair of back-to-back links. A

bidirectional communication model might allow one of these

links to be removed, thereby reducing the solution price by, at

most, one unit. Our algorithm arrived at such solutions. If one

were to reinsert that link, the solution prices would be equal to

those of SOS, which we have shown in parentheses in Table VI.

For the problems with deadlines six, eight, and 15, SOS’s solu-

tions contain no back-to-back links. Therefore, a bidirectional

communication model would not improve the solutions.

Our optimization algorithm produced a solution with the

same price as SOS’s optimal solution for every example in

which a bidirectional communication model would not allow a

pair of back-to-back links to be merged in the optimal solution

produced by SOS. In cases for which our communication model

could potentially allow point-to-point communication links to

be merged, thereby reducing price, our algorithm arrived at a

solution that had a price exactly equal to that of SOS, minus

the savings that might result from merging of back-to-back

links. In practice, our optimization algorithm finds solutions

that are substantially equivalent to those produced by SOS,

an optimal algorithm, although our optimization algorithm

has CPU time requirements that do not increase rapidly with

increasing problem complexity.

Table VII compares the results produced by running our

optimization algorithm on Hou and Wolf’s examples [71]

with those produced by other hardware–software cosynthesis

algorithms. The first column states whether or not the example

in question is clustered. Task clustering is the process of using

a prepass to collapse multiple tasks into a cluster of tasks.

This cluster is treated like a single task during assignment,

i.e., all the tasks in a cluster are executed on the same PE.

Clustering reduces the complexity of the cosynthesis problem

by decreasing the number of tasks that must be assigned.

Clustered graphs have a similar structure to unclustered graphs

but contain fewer tasks. The second column contains the names

of Hou and Wolf’s examples. The third column shows the

prices of the solutions produced by our optimization algorithm.

The other columns show the prices of the solutions found by

algorithms developed by other researchers. The fourth column

is for COSYN [21]. The fifth column is for Yen’s iterative

improvement algorithm [33]. The sixth column is for Oh and

Ha’s heuristic [27].

The above examples contained no soft deadlines or power

information. Therefore, we ran our optimization algorithm in

single-objective price optimization mode. We did not contract

the periods and deadlines of these examples to reduce the

hyperperiod: These are precisely Hou and Wolf’s examples.

We used the same optimization parameters for each of these

examples and for the examples in the previous section. These

examples were run on a 1.4-GHz AMD Athlon Thunderbird

CPU. Each example took approximately 10 min of CPU time,
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TABLE VII
OPTIMIZATION FOR THE HOU AND WOLF’S EXAMPLES

with the exception of H&W 1&3 unclustered, which took

74 min of CPU time. For all of Hou and Wolf’s problems, our

optimization algorithm arrived at solutions with prices that are

equal to or lower than those produced by past work.

It is interesting to note the implications of these results for

clustering research. Task clustering converts a task graph into

another task graph with fewer nodes by grouping some nodes

together and treating them as a single node. This has the poten-

tial to improve the solutions produced by a cosynthesis algo-

rithm by eliminating unpromising areas from the search space.

For example, if all of a problem’s promising solutions assign

two tasks to the same PE and schedule them concurrently, con-

verting them into a single task will concentrate a search on the

most promising areas of the solution space. However, although

task clustering can simplify a hardware–software cosynthesis

problem and eliminate unpromising potential solutions from

the search space, it can also eliminate promising solutions from

the search space. Note that for the H&W 3&4 example, our

optimization algorithm was able to find a superior solution to

the unclustered version of the problem. For the unclustered

version of this problem, our optimization algorithm found a

solution with a price of 140. However, for the clustered version,

such a solution is not possible. In this example, clustering

forced tasks that would ideally be assigned to different PEs to

be assigned to the same PE. It is important for a clustering algo-

rithm not to eliminate the possibility of finding a good solution

in its attempts to simplify a problem. It is our opinion that the

best place to carry out such pruning and simplification is within

a synthesis algorithm, where additional information is available

about allocation and assignment, not as a prepass.

In summary, when compared with the four results of

the optimal SOS MILP solver [28], for each problem, the

optimization infrastructure used in SLOPES also produces

optimal solutions. For large problem instances, the CPU time

required was 1/100 000 of that required by the MILP solver. For

very small and tightly constrained problem instances, the MILP

solver was faster than the optimizer used in SLOPES. However,

for these problem instances, CPU time requirements were also

low for SLOPES (approximately 15 min). The difference in

CPU times increased dramatically with increasing problem

size. Note that, unlike SOS, SLOPES makes no guarantee

of finding optimal solutions for all problem instances. When

compared with two iterative improvement algorithms [27], [59]

as well as a constructive algorithm [21], the optimization in-

frastructure used in SLOPES found results that were the same,

in three cases, and better, in three cases, than the best results

found by any of these other heterogeneous distributed system

synthesis algorithms. The required CPU time was similar to

that of the constructive algorithm and ranged from equal to

1/1000 that of the iterative improvement algorithm, with larger

performance improvements for larger problem instances.

C. Synthesis of Partially Reconfigurable Heterogeneous

Distributed Systems

The results for our hardware–software cosynthesis system

are shown in Table VIII. In this table, columns 2 and 3,

respectively, show the corresponding system price and average

power consumption of all the nondominated solutions. The last

column shows the CPU time required for cosynthesis. The

system price is calculated by summing the prices of all the

processors, FPGAs, communication resources, and memory

in the synthesized distributed embedded system. The average

system power consumption is calculated by summing all the ex-

ecution, reconfiguration, communication, and idle energy con-

sumption in the hyperperiod and dividing by the hyperperiod.

Table VIII illustrates the ability of our cosynthesis system

to explore the design space. Our multiobjective optimization

approach allows a range of tradeoffs between system price

and average power consumption. All real-time constraints are

satisfied. The runtime indicates that large task graphs can be

handled in a reasonable amount of time.

VI. CONCLUSION

This paper described SLOPES, which is a multiobjec-

tive hardware–software cosynthesis algorithm for real-time

distributed embedded systems. A 2-D (space and time) mul-

tirate cyclic scheduling algorithm was proposed to tackle the

scheduling problem in dynamically reconfigurable FPGAs.

This algorithm not only minimizes schedule length (thus

allowing cheaper PEs) but also significantly reduces reconfigu-

ration energy. Reconfiguration delay and energy are the main

bottlenecks in exploiting dynamic reconfiguration in modern

FPGAs; SLOPES addresses both of these bottlenecks. The

cosynthesis system optimizes both the price and average power

consumption of distributed embedded systems containing

partially dynamically reconfigurable FPGAs.
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TABLE VIII
HARDWARE–SOFTWARE COSYNTHESIS RESULTS
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