
High-Performance Operating System Controlled Memory
Compression

Lei Yang† Haris Lekatsas‡ Robert P. Dick†

†(l-yang,dickrp)@ece.northwestern.edu
Northwestern University

Evanston, IL 60208

‡lekatsas@nec-labs.com
NEC Laboratories America

Princeton, NJ 08540

ABSTRACT

This article describes a new software-based on-line memory com-
pression algorithm for embedded systems and presents a method
of adaptively managing the uncompressed and compressed mem-
ory regions during application execution. The primary goal of this
work is to save memory in disk-less embedded systems, resulting in
greater functionality, smaller size, and lower overall cost, without
modifying applications or hardware. In comparison with algorithms
that are commonly used in on-line memory compression, our new
algorithm has a comparable compression ratio but is twice as fast.
The adaptive memory management scheme effectively responds to
the predicted needs of applications and prevents on-line memory
compression deadlock, permitting reliable and efficient compres-
sion for a wide range of applications. We have evaluated our tech-
nique on an embedded portable device and have found that the
memory available to applications can be increased by 150%, al-
lowing the execution of applications with larger working data sets,
or allowing existing applications to run with less physical memory.

Categories and Subject Descriptors: C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems
General Terms: Algorithms, Management, Performance
Keywords: Virtual memory, Compression

1. Introduction

Every year, embedded system designers pack more functionality
into less space, while meeting tight performance and power con-
sumption constraints. Software running on some embedded de-
vices, such as cellular phones and PDAs, is becoming increasingly
complicated, requiring faster processors and more memory to exe-
cute. In this work, we propose a method of increasing functionality
without changes to hardware or applications by making better use
of physical memory via on-line memory compression.

Our existing memory compression framework, CRAMES [1],
takes advantage of an operating system’s (OS’s) virtual memory
infrastructure by storing swapped-out pages in compressed format.
It dynamically adjusts the size of the compressed RAM area, pro-
tecting applications capable of running without it from performance
or energy consumption penalties. This memory compression tech-
nique has been implemented as a loadable module for the Linux
kernel and evaluated on a battery-powered embedded system. Ex-
perimental results indicate that it is capable of doubling the amount
of RAM available to applications. When used for this purpose, it
has little or no impact on the execution times and energy consump-
tions of applications capable of running without CRAMES.

Although this version of CRAMES that used existing compres-
sion algorithms greatly increased usable memory for a wide range
of applications, using it to cut physical memory to 40% increased
application execution time by 29%, in the worst case. This con-
flicted with our goal of dramatically increasing the memory avail-

This work is supported in part by NEC Laboratories America and in part by the NSF
under award CNS-0347941.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1595933816/06/0007 ...$5.00.

able to applications without changing applications, without chang-
ing hardware, and without significant performance degradation, for
all realistic embedded applications. In this article, we describe two
techniques to further improve the performance of on-line software-
based memory compression.

We present a very fast, high-quality compression algorithm for
working data set pages. This algorithm, named pattern-based par-
tial match (PBPM), explores frequent patterns that occur within
each word of memory and takes advantage of the similarities among
words by keeping a small two-way, hashed, set associative dictio-
nary that is managed with a least-recently used (LRU) replacement
policy. PBPM has a compression ratio that is competitive with the
best compression algorithms of the Lempel-Ziv family [2] while
exhibiting lower run-time and memory overhead.

In addition, we present an adaptive compressed memory manage-
ment technique that predictively allocates memory for compressed
data. Experimental results show that our new pre-allocation method
is able to further increase available memory to applications by up
to 13% compared to the same system without pre-allocation.

2. Related work

A number of previous approaches incorporated compression into
the memory hierarchy for different goals. Main memory compres-
sion techniques [3] insert a hardware compression/decompression
unit between cache and RAM. Data is stored uncompressed in cache,
and compressed on-the-fly when transferred to memory. Code com-
pression techniques [4] store instructions in compressed format and
decompress them during execution. Compression is usually done
off-line and can be slow, while decompression is done during exe-
cution, usually by special hardware, and must be very fast.

Compressed caching [5,6] introduces a software cache to the vir-
tual memory system that uses part of the memory to store data in
compressed format. Swap Compression [7,8] compresses swapped
pages and stores them in a memory region that acts as a cache be-
tween memory and disk. The primary objective of both techniques
is to improve system performance by decreasing the number of page
faults that must be serviced by hard disks. Both techniques require
a backing store, i.e., hard disks, when the compressed cache is filled
up. Unlike hardware-based main memory compression techniques,
neither compressed caching nor swap compression is able to com-
press code in memory.

IBM’s MXT technology [3] used a hardware parallelized deriva-
tive of LZ77 [2]. Kjelso, et al. [9] designed X-Match, a hardware-
based dictionary coding algorithm. Wilson [6] proposed WKdm, a
software-based dictionary coding algorithm. Rizzo [7] presented a
software-based algorithm that compresses in-RAM data by exploit-
ing the high frequency of zero-valued data.

3. Overview of CRAMES

This section briefly introduces the design and implementation of
CRAMES to provide readers a context for the techniques presented
in this paper. To increase available memory to embedded systems,
CRAMES selectively compresses data pages when the working data
sets of processes exceed physical RAM capacity. When data in a
compressed page is later required by a process, CRAMES locates
that page, decompresses it, and copies it back to the main mem-
ory working area, allowing the process to continue executing. In
order to minimize performance and energy consumption impact,
CRAMES takes advantage of the OS virtual memory swapping
mechanism to decide which data pages to compress and when to
perform compression and decompression. CRAMES requires an
MMU. However, no other special-purpose hardware is required.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(1
6,

1)
(8

,2
)

(4
,4

)

(3
2,

1)

(1
6,

2)
(8

,4
)

(6
4,

1)

(3
2,

2)

(1
6,

4)

(1
28

,1
)

(6
4,

2)

(3
2,

4)

(2
56

,1
)

(1
28

,2
)

(6
4,

4)

Dictionary layout (size, level)

P
e
rc

e
n

ta
g

e
 %

 xmxx

 xzxz

 zxxz

 xzzx

 zxzz

 zzxz

 xzzz

 xxzz

 xxzx

 xzxx

 xxxz

 zxxx

 zzxx

 zxzx

 mmmx

 mmxx

 mmmm

 zzzx

 xxxx

 zzzz

Figure 1: Frequent pattern histogram

To ensure good performance, the compression algorithm used in
CRAMES must be highly efficient at both compression and decom-
pression. It must also provide a good compression ratio, yet require
little working memory. In addition, CRAMES must efficiently or-
ganize the compressed swap device to enable fast compressed page
access and minimal memory waste. CRAMES dynamically ad-
justs the size of the compressed area during operation based on the
amount of memory required so that applications capable of running
without memory compression do not suffer performance or energy
consumption penalties as a result of its use. In addition to data set
compression, CRAMES also supports compression of arbitrary in-
RAM filesystems.

CRAMES has been implemented as a loadable Linux kernel mod-
ule for maximum portability and modularity, however it can easily
be ported to other modern OSs. The module was evaluated on a
next generation smartphone prototype and a battery-powered PDA
using well-known batch benchmarks as well as interactive applica-
tions with graphical user interfaces (GUIs). The results show that
CRAMES is capable of dramatically increasing memory capacity
with small performance and power consumption costs.

4. Pattern-based partial match compression

The original implementation of CRAMES used the LZO [10] algo-
rithm to compress data in memory. LZO is significantly faster than
many other general-purpose compression algorithms, e.g., LZW se-
ries algorithms, gzip, and bzip2. However, it is not designed for
memory compression and therefore does not fully exploit the regu-
larities of in-RAM data. In addition, LZO requires 64 KB of work-
ing memory, a significant overhead on many memory-constrained
embedded systems. In summary, LZO is a general-purpose algo-
rithm with good compression ratio and performance. However, bet-
ter results are possible for the on-line memory compression appli-
cation. In this paper, we analyze the regularities of in-RAM data
and describe a new algorithm, named PBPM, that is extremely fast
and well-suited for memory compression.

The PBPM algorithm is based on the observation that frequently-
encountered data patterns can be encoded with fewer bits to save
space. Scanning through the input data a word (32 bits) at a time,
PBPM exploits patterns that occur frequently within each word of
memory and searches for complete and partial matches with dic-
tionary entries to take advantage of the similarities among words.
More specifically, (1) some patterns that are very frequent are en-
coded using special bit sequences that are much shorter than the
original data, (2) patterns that do not fall into the above category
and are found in a small dictionary are encoded using the index of
their location in dictionary, and finally (3) patterns that do not fre-
quently occur and cannot be found in the dictionary are stored in
dictionary while the word contents are output.

4.1. In-RAM data patterns
Unlike general-purpose algorithms designed for text data, a special-
purpose algorithm designed for in-RAM data compression must
fully exploit the regularities present in memory. In-RAM data fre-
quently have certain patterns. For example, pages are usually zero-
filled after being allocated. Therefore, runs of zeroes are commonly

Code Pattern Output Size (bits) Frequency

00 zzzz 00 2 38.0%
01 xxxx 01BBBB 34 21.6%
10 mmmm 10bbbb 6 11.2%
1100 zzzx 1100B 12 9.3%
1101 mmxx 1101bbbbBB 24 8.9%
1110 mmmx 1110bbbbB 16 7.7%
1111 zxzx 1111BB 20 3.1%

Table 1: Pattern encoding in PBPM

encountered during memory compression. Numerical values are of-
ten small enough to be stored in 4, 8, or 16 bits, but are normally
stored in full 32-bit words. Furthermore, numerical values tend to
be similar to other values in nearby locations. Likewise, pointers
often point to adjacent objects in memory, or are similar to other
pointers in nearby locations.

In order to develop a reasonable set of frequent patterns, we ex-
perimented with a 64 MB swap data file from a workstation running
SuSE Linux 9.0. Various applications were executed to exhaust
physical memory and trigger swapping. Figure 1 shows the relative
frequencies of patterns we evaluated. Below we specify the conven-
tions in describing the data and patterns, as well as the dictionary
management scheme we considered.

We consider each 32-bit word (four bytes) as an input, and rep-
resent them with four symbols, each of which represents a byte. A
‘z’ represents a zero byte, an ‘x’ represents an arbitrary byte, and an
‘m’ represents a byte that matches with a dictionary entry. Follow-
ing this convention, ‘zzzz’ indicates an all-zero word, while ‘mmmx’
indicates a partial match with one dictionary entry for which only
the lowest byte differs.

To allow fast search and update operations, we maintain a hash-
mapped dictionary. More specifically, the third byte of a word is
hash-mapped to a 256 entry hash table, the contents of which are
random indices that are within the range of the dictionary. Based
on this hash function, we only need to consider four match patterns:
‘mmmm’ (full match), ‘mmmx’ (highest three bytes match), ‘mmxx’
(highest two bytes match), and ‘xmxx’ (only the third byte matches).
Note that neither the hash table nor the dictionary need be stored
with the compressed data. The hash table is static and the dynamic
dictionary is regenerated automatically during decompression.

We experimented with different dictionary sizes/layouts, e.g., 16-
entry direct-mapped and 32-entry two-way set associative, etc. A
direct hash-mapped dictionary has the advantage of supporting fast
search and update: only a single hashing operation and lookup are
required per access. However, it has tightly limited memory. For
each hash target, only the most recently observed word is remem-
bered; the victim to be replaced is decided entirely by its hash tar-
get. In contrast, if a dictionary is maintained with move-to-front
strategy, its LRU entry is selected as the victim. Unfortunately,
searching in such a dictionary is slow. A set associative dictionary
can enjoy the benefits of both LRU replacement and speed. When
a search miss followed by a dictionary update occurs, the oldest of
the dictionary entries sharing one hash target index is replaced.

As Figure 1 illustrates, zero words, ‘zzzz’, are the most frequent
compressible pattern (38%), followed by one byte positive sign-
extended words ‘zzzx’ (9.3%). ‘zxzx’ has a frequency of 2.8%.
Other zero-related patterns are infrequent. As the dictionary size
increases, dictionary match (including partial match) frequencies
do not increase much. While a set associative dictionary usually
generates more matches than a direct hash-mapped dictionary with
the same overall size, a four-way set associative dictionary works
no better than a two-way set associative dictionary.

4.2. The PBPM compression algorithm

The PBPM compression and decompression algorithms are pre-
sented in Algorithm 1. PBPM maintains a small two-way set asso-
ciative dictionary DICT[] of 16 recently-seen words. An incoming
word can fully match a dictionary entry, or match only the high-
est three bytes or two bytes of a dictionary entry. These patterns
occurred frequently during swap trace analysis. The patterns and
coding schemes are summarized in Table 1, which also reports the
actual frequency of each pattern observed in our swap data file when
other infrequent patterns are ignored. In Algorithm 1 and column
‘Output’ of Table 1, ‘B’ represents a byte and ‘b’ represents a bit.

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

 2048 4096 6144 8192

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Block Size (bytes)

lzo
pbpm

lzrw

0.0e+000

2.0e-005

4.0e-005

6.0e-005

8.0e-005

1.0e-004

1.2e-004

 2048 4096 6144 8192

C
o

m
p

re
s
s
io

n
 T

im
e

 (
s
)

Block Size (bytes)

lzo
pbpm

lzrw

0.0e+000

5.0e-006

1.0e-005

1.5e-005

2.0e-005

2.5e-005

3.0e-005

3.5e-005

4.0e-005

 2048 4096 6144 8192

D
e

c
o

m
p

re
s
s
io

n
 T

im
e

 (
s
)

Block Size (bytes)

lzo
pbpm

lzrw

Figure 2: Compression ratios and speeds of PBPM, LZO, and LZRW

Total memory allocated

None CRAMES A−CRAMES

M
e

m
o

ry
 (

M
B

)

0

4

8

12

16

20

24

28

32

36

40

16

33

38

Average execution time

None CRAMES A−CRAMES

T
im

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

4.47

8.39 8.25

Figure 3: Performance of A-CRAMES

Algorithm 1 PBPM (a) compression and (b) decompression

Require: IN, OUT word stream
Require: TAPE, INDX bit stream
Require: DATA byte stream
1: for word in range of IN do
2: if word = zzzz then
3: TAPE 00
4: else if word = zzzx then
5: TAPE 1100
6: DATA B

7: else if word = zxzx then
8: TAPE 1111
9: DATA BB

10: else
11: mmmm DICT[hash(word)]
12: if word = mmmm then
13: TAPE 10
14: INDX bbbb
15: else if word = mmmx then
16: TAPE 1110
17: INDX bbbb
18: DATA B

19: Insert word to DICT
20: else if word = mmxx then
21: TAPE 1101
22: INDX bbbb
23: DATA BB

24: Insert word to DICT
25: else
26: TAPE 01
27: DATA BBBB

28: Insert word to DICT
29: end if
30: end if
31: end for
32: OUT Pack(TAPE,DATA,INDX)

Require: IN, OUT word stream
Require: TAPE, INDX bit stream
Require: DATA byte stream
1: Unpack(OUT)
2: for code in range of TAPE do
3: if code = 00 then
4: OUT zzzz

5: else if code = 1100 then
6: B DATA
7: OUT zzzB

8: else if code = 1111 then
9: BB DATA
10: OUT zBzB

11: else if code = 10 then
12: bbbb INDX
13: OUT DICT[bbbb]
14: else if code = 1110 then
15: bbbb INDX
16: mmmm DICT[bbbb]
17: B DATA
18: OUT mmmB

19: Insert mmmB to DICT
20: else if code = 1101 then
21: bbbb INDX
22: mmmm DICT[bbbb]
23: BB DATA
24: OUT mmBB

25: Insert mmBB to DICT
26: else if code = 01 then
27: BBBB DATA
28: OUT BBBB

29: Insert BBBB to DICT
30: end if
31: end for

5. Adaptive compressed memory management

As described in Section 3, CRAMES compresses the swapped-out
data a page (4,096 bytes) at a time and stores them in a special com-
pressed RAM device. Upon initialization, the compressed RAM
device only requests a small memory chunk (usually 64 KB) and re-
quests additional memory chunks as system memory requirements
grow. Therefore, the size of a compressed RAM device dynam-
ically adjusts during operation, adapting to the data memory re-
quirements of the currently running applications.

The above dynamic memory allocation strategy works well when
the system is not under extreme memory pressure. However, it suf-
fers from a performance penalty when the system is dangerously
low on memory: applications and CRAMES compete for remain-
ing physical memory and there is no guarantee that an allocation
request will be satisfied. If physical memory is nearly exhausted,
an application may be unable to allocate additional memory. If
CRAMES were able to allocate even a page of physical memory
for its compressed memory region, it would be able to swap out
(on average) two pages, allowing the application to proceed. How-
ever, CRAMES is in contention with the application, resulting in a
scenario we call on-line memory compression deadlock.

To avoid on-line memory compression deadlock, a compressed
RAM device needs to be predictive during its requests for addi-
tional memory, i.e., it cannot wait until no existing chunks can al-
locate a fit slot for the incoming data. This subtle issue comprises a
difference between our technique and compressed caching as well
as swap compression, in which hard drives serve as backing store
to which pages can be moved as soon as (or even earlier than) the
compressed area is stuffed, so that the compressed memory is al-
ways available to applications.

We propose the following scheme to prevent on-line memory
compression deadlock. CRAMES monitors the compressed area
utilization and requests the allocation of a new memory chunk based
on the saturation of current memory chunks. When the total amount
of memory in the compressed area is above a predefined fill ratio,
CRAMES requests a new chunk from kernel. This request may
also be denied if the system memory is dangerously low. How-
ever, even if this first request is denied, subsequent invocations
of CRAMES will generate additional requests. After low-memory
conditions cause applications to swap out pages to the compressed
RAM device, more memory will be available and the preemptive
compressed RAM device allocation requests will finally be suc-
cessful. We have experimented with different fill ratios and found
that 7/8 is sufficient to permit successful requests of compressed
RAM device memory allocation in all tested applications. This ra-
tio also results in little memory waste. Evaluation of this method
on a portable embedded system is presented in Section 6.2.

6. Evaluation

In this section, we describe the evaluation methodology and results
of the techniques proposed for high-performance on-line memory
compression. More specifically, the following questions are exper-
imentally evaluated:

1. Does PBPM provide a comparable compression ratio yet have
even lower performance costs than existing algorithms?

2. Does adaptive memory management enable CRAMES to pro-
vide more memory to applications when system RAM is tightly
constrained?

3. What is the overall performance of CRAMES using PBPM and
adaptive memory management?

To evaluate the proposed techniques, we used a Sharp Zaurus SL-
5600 PDA. This battery-powered embedded system runs an embed-
ded version of Linux, has a 400 MHz Intel XScale PXA250 proces-
sor, 32 MB of flash memory, and 32 MB of RAM. In our current
system configuration, 12 MB of RAM are used for uncompressed,
battery-backed filesystem storage and 20 MB are available to kernel
and user applications.

6.1. Quality and speed of the PBPM algorithm

We evaluated the compression ratio and speed of the PBPM algo-
rithm compared to two other compression algorithms that have been
used for on-line memory compression: LZO and LZRW. Figure 2
illustrates the compression ratios (compressed block size divided
by original block size) and execution times of evaluated algorithms.
For these comparisons, the source file for compression is the swap
data file (divided into uniform-sized blocks) used to identify the
frequent patterns in memory. The evaluation was performed on
a Linux Workstation with a 2.40 GHz Intel Pentium 4 processor.
Note that OS-controlled on-line memory compression is a symmet-
ric application, i.e., a memory page is decompressed exactly once
every time it is compressed. Therefore, the overall, symmetric, per-
formance of a compression algorithm is the critical performance
metric. Overall, PBPM achieves a 200% speedup over LZO and
LZRW. Yet the compression ratio achieved by PBPM is comparable
with that of LZO and LZRW. We believe that PBPM is especially
suitable for on-line memory compression because of its extremely
fast symmetric compression and good compression ratio.

Adpcm: Speech compression

Source: MediaBench

Data size: 24 KB

Code size: 4 KB

Jpeg: Image encoding

Source: MediaBench

Data size: 176 KB

Code size: 72 KB

Mpeg2: Video CODEC

Source: MediaBench

Data size: 416 KB

Code size: 48 KB

Matrix Mul.: 512 by 512 matrix

multiplication

Data size: 2948 KB

Code size: 4 KB

Benchmark Description
RAM Adpcm Jpeg Mpeg2 Matrix Mul.
(MB) w.o. LZO PBPM w.o. LZO PBPM w.o. LZO PBPM w.o. LZO PBPM

Execution Time (s)

8 4.83 1.69 1.43 0.71 0.26 0.23 79.35 80.30 77.96 n.a 39.26 38.68
9 3.69 1.35 1.26 0.44 0.21 0.21 76.80 76.83 74.04 n.a 37.40 38.24
10 1.41 1.34 1.36 0.23 0.21 0.21 79.06 76.93 75.32 59.11 39.56 37.18
11 1.37 1.40 1.40 0.26 0.25 0.21 80.57 76.81 76.83 44.44 38.42 42.65
12 1.37 1.31 1.32 0.24 0.21 0.19 76.79 76.94 76.95 41.72 38.73 43.96
20 1.31 1.30 1.30 0.23 0.21 0.22 76.60 76.77 76.76 43.02 41.41 42.97

Power Consumption (W)

8 2.13 2.13 2.13 2.15 2.16 2.15 2.41 2.41 2.51 n.a 2.26 2.29
9 2.10 2.10 2.13 2.15 2.02 2.07 2.41 2.40 2.50 n.a 2.26 2.29
10 2.09 2.10 2.09 2.00 1.99 2.04 2.39 2.40 2.48 2.24 2.25 2.29
11 2.12 2.09 2.13 2.05 2.04 2.07 2.40 2.40 2.50 2.26 2.25 2.29
12 2.09 2.13 2.11 2.03 2.05 2.10 2.40 2.41 2.55 2.25 2.25 2.29
20 2.11 2.09 2.18 2.15 2.02 2.24 2.42 2.43 2.57 2.28 2.27 2.29

Energy Consumption (J)

8 10.34 3.60 3.04 1.51 0.56 0.49 190.99 193.42 195.71 n.a 88.74 88.62
9 7.75 2.84 2.68 0.94 0.42 0.43 185.38 184.55 185.10 n.a 84.70 87.64
10 2.94 2.79 2.85 0.47 0.42 0.42 188.62 184.34 186.42 131.05 88.99 85.01
11 2.89 2.93 2.97 0.54 0.52 0.44 193.10 184.69 191.94 100.01 86.38 97.79
12 2.86 2.79 2.79 0.49 0.43 0.41 184.45 185.74 196.33 93.65 86.94 100.81
20 2.75 2.72 2.82 0.48 0.43 0.49 185.72 186.56 197.26 98.27 94.07 98.39

Figure 4: Overall performance of CRAMES

6.2. Effectiveness of adaptive memory management

In order to determine the effectiveness of adaptive memory man-
agement in providing more memory to applications under signifi-
cant memory pressure, we designed the following experiments. We
wrote a ‘memeater’ program that continuously requests 1 MB of
memory at a time and fills the allocated memory with random num-
bers (including zero runs with similar frequency to that observed
in real swap traces), until an allocation request fails. Memeater
was then executed on Zaurus under three different system settings:
without using CRAMES (none), using CRAMES without adap-
tive memory management (CRAMES), and using CRAMES with
adaptive memory management (A-CRAMES). Figure 3 presents
the total memory allocated and average execution times under the
three system settings (memeater was executed multiple times un-
der each setting). Without CRAMES, the system was only able to
provide 16 MB of memory to memeater. With CRAMES, 33 MB
of memory were provided and the execution time was proportional
to the amount of memory allocated, i.e., no delay was observed.
Furthermore, when adaptive memory management is enabled (A-
CRAMES), 38 MB of memory were allocated with no additional
cost. These results support our claim in Section 5 that A-CRAMES
helps to prevent on-line data compression deadlock.

6.3. Overall performance of the improved CRAMES

Embedded system with high-performance on-line memory com-
pression can be designed with less RAM and still support desired
applications. In order to evaluate the impact of using CRAMES
to reduce physical RAM, we artificially constrained the memory
size of a Zaurus with a kernel module that permanently reserves
a certain amount of physical memory. The memory allocated to
a kernel module cannot be swapped out and therefore is not com-
pressed by CRAMES. This guarantees the fairness of our compari-
son. With reduced physical RAM, we measured and compared the
run times, power consumptions, and energy consumptions of four
batch benchmarks, i.e., three applications from MediaBench [11]
(Adpcm, Jpeg, Mpeg2) and a 512 by 512 matrix multiplication ap-
plication. Figure 4 shows execution times, power consumptions,
and energy consumptions of benchmarks running without compres-
sion, with LZO compression, and with PBPM compression under
different memory constraints. Note that adaptive memory manage-
ment was enabled in both LZO and PBPM compression to ensure
fair comparison. In our experiments, each benchmark was executed
multiple times; the average results are reported.

As shown in Figure 4, when system RAM was reduced to 8 MB,
without CRAMES, all benchmarks suffered from significant perfor-
mance degradation; the 512 by 512 matrix multiplication couldn’t
even execute due to memory constraints. However, with the help
of CRAMES, all benchmarks were able to execute with only slight
performance and energy consumption penalties. Compared with
the base case in which system RAM is 20 MB and CRAMES is not
used, PBPM compression results in an average performance penalty
of 2.1% and a worst-case performance penalty of 9.2%. This rep-

resents a substantial improvement over LZO, for which the aver-
age performance penalty is 9.5% and the worst-case performance
penalty can be as high as 29%.

7. Conclusions and acknowledgments

High-performance OS controlled memory compression can assist
embedded system designers to optimize hardware design for typi-
cal software memory requirements while also supporting (sets of)
applications with larger data sets. In this paper, we proposed and
evaluated a fast software-based compression algorithm for use in
this application. This algorithm provides comparable compression
ratios to existing algorithms used in on-line memory compression
with significantly better symmetric performance. We also presented
an adaptive compressed memory management scheme to prevent
on-line memory compression deadlock, permitting reliable and ef-
ficient on-line memory compression for a wide range of applica-
tions. Experimental results indicate that the improved CRAMES
allows applications to execute with only slight penalties even when
system RAM is reduced to 40% of its original size.

We would like to acknowledge Dr. Srimat Chakradhar of NEC
Laboratories America for his support and technical advice. We
would also like to acknowledge Hui Ding of Northwestern Uni-
versity for his suggestions on efficiently implementing PBPM.

8. References

[1] L. Yang, et al., “CRAMES: Compressed RAM for embedded
systems,” in Proc. Int. Conf. Hardware/Software Codesign and
System Synthesis, Sept. 2005.

[2] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23,
no. 3, pp. 337–343, 1977.

[3] B. Tremaine, et al., “IBM memory expansion technology,” IBM
Journal of Research and Development, vol. 45, no. 2, Mar. 2001.

[4] H. Lekatsas, J. Henkel, and W. Wolf, “Code compression for low
power embedded system design,” in Proc. Design Automation Conf.,
June 2000, pp. 294–299.

[5] F. Douglis, “The compression cache: Using on-line compression to
extend physical memory,” in Proc. USENIX Conf., Jan. 1993.

[6] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The case for
compressed caching in virtual memory systems,” in Proc. USENIX
Conf., 1999, pp. 101–116.

[7] L. Rizzo, “A very fast algorithm for RAM compression,” Operating
Systems Review, vol. 31, no. 2, pp. 36–45, Apr. 1997.

[8] I. C. Tuduce and T. Gross, “Adaptive main memory compression,” in
Proc. USENIX Conf., Apr. 2005.

[9] M. Kjelso, M. Gooch, and S. Jones, “Performance evaluation of
computer architectures with main memory data compression,” in J.
Systems Architecture, vol. 45, 1999, pp. 571–590.

[10] “LZO real-time data compression library,”
http://www.oberhumer.com/opensource/lzo.

[11] C. Lee, M. Potkonjak, and W. H. M. Smith, “Mediabench: A tool for
evaluating and synthesizing multimedia and communications
systems,” http://cares.icsl.ucla.edu/MediaBench.

