
Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones

Lide Zhang† Birjodh Tiwana† Zhiyun Qian† Zhaoguang Wang†

Robert P. Dick† Z. Morley Mao† Lei Yang⋆

†EECS Department, University of Michigan
Ann Arbor, MI, USA

{lide,tiwana,zhiyunq,zgw,dickrp,zmao}@umich.edu

⋆ Google Inc.
Mountain View, CA, USA

leiyang@google.com

ABSTRACT

This paper describes PowerBooter, an automated power
model construction technique that uses built-in battery volt-
age sensors and knowledge of battery discharge behavior to
monitor power consumption while explicitly controlling the
power management and activity states of individual com-
ponents. It requires no external measurement equipment.
We also describe PowerTutor, a component power manage-
ment and activity state introspection based tool that uses
the model generated by PowerBooter for online power esti-
mation. PowerBooter is intended to make it quick and easy
for application developers and end users to generate power
models for new smartphone variants, which each have dif-
ferent power consumption properties and therefore require
different power models. PowerTutor is intended to ease the
design and selection of power efficient software for embed-
ded systems. Combined, PowerBooter and PowerTutor have
the goal of opening power modeling and analysis for more
smartphone variants and their users.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques

General Terms

Measurement, Design

Keywords

Power modeling, mobile phones, battery

1. INTRODUCTION
There is tension between the interest in potentially power-

hungry smartphone application features and the require-
ment for low power consumption necessary for long bat-
tery lifespans. Designers of smartphone hardware–software

This work was supported in part by Google; in part by
NSF under awards CNS-0720691, CCF-0702761, and CNS-
0347941; in part by SRC under award 2007-HJ-1593; and in
part by DARPA under award HR0011-08-1-0021.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-905-3/10/10 ...$10.00.

platforms have incorporated power-saving features, allowing
components to dynamically adjust their power consumptions
based on required functionality and performance. However,
using these features wisely (or at least avoiding undermin-
ing their benefits) requires that software developers under-
stand the implications of their design decisions. Unfortu-
nately, many software developers have limited experience
with energy-constrained portable embedded systems such as
smartphones. As a consequence, many smartphone applica-
tions are unnecessarily power-hungry.

End users have difficulty determining which applications
are energy-efficient, and which squander energy; as a re-
sult, application users may blame short battery lifespans on
the operating system or hardware platform instead of un-
fortunate and unintentional software design decisions. For-
tunately, application designers have an incentive to develop
energy-efficient smartphone software. Their main barrier is
the difficulty of determining the impact of software design
decisions on system energy consumption, but that barrier
can be overcome.

Researchers have proposed a number of power models for
portable embedded systems including Palm [1] and HTC
Dream [2]. These power models were derived manually by
using a power meter attached to one specific embedded sys-
tem instance. As a result of the model derivation process,
the generated power model is at best accurate for one type
of embedded system and at worst accurate only for the spe-
cific embedded system instance for which it was built. It
would require great effort and time to manually generate
power models for the wide range of phones now available.

This paper describes online power model generation tech-
niques. The models produced by these techniques provide
accurate, real-time power consumption estimates for power-
intensive Android platform smartphone components includ-
ing CPU, LCD, GPS, and audio, as well as Wi-Fi and cellu-
lar communication components. The proposed power model
is based on the influence of the power management and ac-
tivity states of hardware components on system power con-
sumption. Hardware components are associated with system
variables, e.g., LCD brightness, that are subject to intro-
spection and allow estimation of component power consump-
tions. We also provide an on-line power estimation tool,
called PowerTutor, that uses a function of these variables to
determine system-level power consumption. The power es-
timation and model generation techniques described in this
paper can be applied to a variety of platforms. PowerTutor
has been evaluated on the Android HTC Dream (ADP1)
and HTC Magic (ADP2) phones.

In this paper, we show that phones of different types have
significant differences in power consumption properties and

provide evidence that power consumption differences be-
tween individual phones of the same type are negligible for
HTC Dream and HTC Magic phones. Motivated by this
observation and the difficulty of generating power models
manually, we propose a battery-based automatic model con-
struction technique. This technique uses the built-in battery
voltage sensors common to modern smartphones. Instead of
using a power meter, we use this voltage sensor, and a some-
what complex but automated characterization procedure, to
generate a power model.

The work described in this paper makes three main re-
search contributions.

1. We provide manually generated power models for HTC
Dream and HTC Magic phones. These comprehensive
system-level models consider CPU, LCD, GPS, Wi-Fi,
cellular, and audio components (see Section 3). This is
the first time a GPS power model has been described.
For components with significant power consumption,
we find that power consumption is independent of the
states of other components. See Section 3 for details.

2. We measure variation in power consumption properties
among phones. In particular, for the phones we stud-
ied, we quantify the (small) variation among multiple
instances of the same type of phone, and the (large)
variation among different types of phones. See Sec-
tion 4 for details.

3. We describe a novel automated power model construc-
tion technique. This technique uses built-in battery
voltage sensors and knowledge of battery discharge be-
havior to monitor power consumption while explicitly
controlling the power management and activity states
of individual components. It requires no external mea-
surement equipment. See Section 5 for details.

In addition, our work makes a practical contribution: we
describe an easy-to-use on-line power estimation technique
that uses the power models described above to determine
component-level power consumption during application ex-
ecution. A software implementation of this estimator has
been released on the Android market. This software tool,
which we refer to as PowerTutor, has been used by more
than 6,000 people. See Section 7 for details.

2. RELATED WORK
In this section we summarize related work on online power

modeling and model construction techniques.
Power modeling has been well studied by many re-

searchers, not only for mobile embedded systems, but also
for general-purpose computers. For example, some power
modeling techniques [3, 4] require deep knowledge of the re-
lationship between processor functional unit activities and
their resulting power consumptions. Run-time functional
unit activities are monitored using built-in hardware per-
formance counters. In contrast, other researchers devel-
oped “black-box” microprocessor power models [5, 6] that
require no knowledge of hardware component implementa-
tion. These models are based on the assumption of linear
relationships between processor power consumption and sev-
eral hardware performance counters, e.g., instructions exe-
cuted and TLB misses. Flinn and Satyanarayanan [7] devel-
oped a workstation power modeling technique that assigns
energy consumption to processes or procedures within a pro-
cess. Such models are simple, fast, and impose low overhead.
However, they only model power consumed by the CPU and

Figure 1: Experimental setup for power measurement.

therefore provide only part of the solution for embedded sys-
tem power estimation.

Mobile embedded system power models are generally
component-based. Cignetti et al. proposed a full-system
power model for Palm PDAs [1] and Shye et al. [2] derived
a system-level power model for Android platform smart-
phones. Both power models were constructed by corre-
lating operating system visible state variables with power
consumption while running a range of normal software ap-
plications. This modeling technique is sometimes accurate.
However, it suffers from a potential drawback: the accuracy
of the resulting model relies on the training applications ex-
ercising the full set of component activity and power man-
agement states that may be encountered during the use of
model. We suggest, instead, that training and characteriza-
tion applications be designed to explicitly exercise all rele-
vant system states, so that the resulting model is appropriate
for use with arbitrary applications. Section 3.2 describes the
selection of components and states to consider.

The above power models are constructed using external
power meters. To the best of our knowledge, only two pa-
pers have proposed battery behavior based power model con-
struction techniques. The concurrent work from Dong and
Zhong [8] proposed a automatic construction of a power
model using a smart battery interface, while Gurun and
Krintz [9] proposed an adaptive power estimation model
that uses the built-in Battery Monitor Unit (BMU). Both
techniques require knowledge of the discharging current and
remaining battery capacity, which are not available for most
phones. Our technique relies only on knowledge of the bat-
tery discharge voltage curve and access to a battery voltage
sensor, which is available on most smartphones.

3. POWER MODEL
We first describe the specific smartphone platform we

model, followed by explanations of our measurement setup.
We then explain the development of training software to ex-
ercise the relevant power management and activity states of
hardware components with significant power consumptions.

3.1 Smartphone Hardware Components and
Experimental Setup

This section describes power modeling of an Android Dev
Phone 1 (ADP1), a version of the HTC Dream mobile phone
that permits superuser access. Its hardware components
are shown in Table 1. We used the Android 1.6 software
development kit, which supports both Java and C program
development. In Section 4, we will describe the power model
for the Android Dev Phone 2 (ADP2).

Table 1: Hardware Components for HTC Dream
Hardware component Detailed description

Processor MSM7201A chipset, including ARM11 application processor, ARM9 modem, and high-performance DSP
LCD Display TFT-LCD flat glass touch-sensitive HVGA screen

Wi-Fi interface Texas Instruments WL 1251B chipset
GPS A-GPS and standalone GPS

Cellular
Qualcomm RTR6285 chipset, supporting GSM, GPRS/EDGE,

Dual band UMTS Bands I and IV, and HSDPA/HSUPA

Bluetooth Bluetooth 2.0+EDR via Texas Instruments BRF6300
Audio Built-in microphone and speaker

Camera 3.2-megapixel camera
Battery Rechargeable lithium-ion battery with capacity: 1,150 mAh
Storage microSD card slot

We use a Monsoon FTA22D meter [10] for power mea-
surement. The measurement instruments are illustrated in
Figure 1. The Monsoon meter supplies a stable voltage to
the phone and samples the power consumption at a rate of
5KHz. During characterization, the ADP1 runs two pro-
grams simultaneously. One is a power state exerciser that
controls characteristics influencing phone power consump-
tion such as CPU utilization and LCD brightness. This
control is not always perfect or precise; we therefore also
run a second program to log readings at sufficiently high
frequency to capture most changes of variables indicating
the system state. By using these two programs, we can ex-
ercise all relevant power states in a relatively short time, and
determine the precise system state at any particular time.

3.2 Selecting Hardware Components and
System Variables

To determine which components need to be considered,
we carry out the following experiment for each.

1. Hold the power and activity states of all other compo-
nents constant.

2. Vary the activity state to extreme values for the com-
ponents of interest, e.g., set CPU utilization to its low-
est and highest values or configure the GPS state to
extreme values by controlling activity and visibility of
GPS satellites.

For each component, determining the setting that results in
extreme power consumption requires some experimentation
and knowledge of the component implementation.

Based on these initial experiments, we exclude the com-
ponents with insignificant impact on the system power con-
sumption, e.g., the SD card. The following components are
modeled: CPU and LCD display as well as GPS, Wi-Fi,
cellular, and audio interfaces. By measuring the power con-
sumption of the phone when it is at different cross prod-
ucts of extreme power states (e.g., for LCD and CPU, the
cross products can be [Full brightness, Low CPU] and [Low
brightness, High CPU]), we found that the maximum er-
ror resulting from assuming that individual components are
independent is 6.27%. This suggests that a sum of inde-
pendent component-specific power estimates is sufficient to
estimate system power consumption.

3.3 Training Suites to Derive Power Model
It is necessary to determine the relationship between each

state variable and power consumption for each relevant hard-
ware component. The main idea is to use a set of training
programs to change one activity state variable at a time,
while keeping all others constant. In each training program,

we periodically vary each state variable over its full range.
Fixing power states of all other components when exercising
one component can reduce measurement noise resulting from
state transitions by other components. For example, to de-
termine the relationship between CPU utilization and total
power consumption, we fix the CPU frequency and disable
the LCD display, as well as the cellular, Wi-Fi, and GPS in-
terfaces. We then use a program to gradually vary the CPU
utilization from 0% to 100%. Note that some component
power state variables cannot be independently controlled.
For example, Wi-Fi and CPU power consumptions are in-
terdependent. To take the influence of interdependent com-
ponents into account, we also monitor all component power
states while exercising the target component. During re-
gression, the power states of all components are considered.
In the following subsections, we discuss the implementation
of the training programs and the relationship between the
power consumption and the corresponding state variables.

CPU: CPU power consumption is strongly influenced by
CPU utilization and frequency. Varying dynamic, leakage,
and peripheral circuit power consumptions invalidate simple
cubic frequency–power relationship approximations. In this
work, we measure the dependence of CPU power consump-
tion on utilization and frequency–voltage settings.

The HTC Dream platform supports two CPU frequen-
cies: 385MHz and 246MHz. The corresponding power co-
efficients are shown in Table 2. We consider only the appli-
cation processor (ARM11); system variables are hidden for
the other processor (ARM9), which is dedicated to cellular
data and voice services [11]. We model the cellular processor
as a part of the cellular interface. The variable βCPU shown
in Table 2 indicates the power difference between active and
idle states of the application processor [12].

The CPU training program is composed of a CPU use
controller, which controls the duty cycle of a computation-
intensive task, and a frequency controller, which writes the
system frequency file in the /sys filesystem.

LCD: The LCD display power model is derived using a
training program that turns the LCD on and off and changes
its brightness. To simplify modeling, we used 10 uniformly
distributed brightness levels.

GPS: We consider the influence of the following GPS-
related variables on power consumption: mode (e.g., ac-
tive, sleep, or off), the number of satellites detected, and
the signal strength of each satellite. All these variables are
logged using the Android Software Development Kit API.
To control the GPS state, we use the requestLocationUpdate
method [12], to make the GPS component switch between
sleep and active states. It was necessary to change the phys-
ical environment of the smartphone to control the number

Table 2: HTC Dream Power Model

Model
(βuh × freqh + βul × freql) × util + βCPU × CPU on + βbr × brightness

+ βGon × GPS on + βGsl × GPS sl + βWi-Fi l × Wi-Fi l + βWi-Fi h × Wi-Fih

+ β3G idle × 3Gidle + β3G FACH × 3GFACH + β3G DCH × 3GDCH

Category System variable Range Power coefficient Category System variable Range Power coefficient

CPU
util 1–100

βuh: 4.34 LCD brightness 0–255 βbr: 2.40
βul: 3.42

GPS
GPS on 0,1 βGon: 429.55

freql,freqh 0,1 n.a. GPS sl 0,1 βGsl: 173.55
CPU on 0,1 βCPU : 121.46

Cellular

data rate 0–∞ n.a.

Wi-Fi

npackets, Rdata 0–∞ n.a. downlink queue 0–∞ n.a.
Rchannel 1–54 βcr uplink queue 0–∞ n.a.
Wi-Fil 0,1 βWi-Fi l: 20 3Gidle 0,1 β3G idle : 10
Wi-Fih 0,1 βWi-Fi h: Equation 1 3GFACH 0,1 β3G FACH : 401

Audio Audio on 0,1 βaudio: 384.62 3GDCH 0,1 β3G DCH : 570

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 20 40 60 80 100 120

P
o

w
e

r
(m

W
)

Time (s)

Act
Slp

Figure 2: Power profile for the current GPS policy.

of satellites available and their signal strengths. To this
end, we use a conductive hemisphere (i.e., a Faraday Wok)
that attenuates radio frequency signals, allowing us to exer-
cise coarse-grained control over the GPS environment. We
considered three states: active with many satellites avail-
able, active with few satellites available, and sleep. Our
measurements indicate that the power consumption depends
strongly on whether the GPS component is active or in sleep
mode (see Figure 2), but has little dependence on the num-
ber of satellites available or the signal strength. Considering
only the GPS operating mode is sufficiently accurate.

Wi-Fi: To derive the Wi-Fi model we consider two net-
work parameters: data rate and channel rate. The Wi-Fi
power model is derived by exchanging fixed size (1KB) TCP
packets between the smartphone and a local server. We
control the data rate by varying the delay between trans-
missions from 0 s to 2 s in steps of 0.1 s. These experiments
are repeated at uplink channel rates of 11Mbps, 36Mbps,
48Mbps, and 54Mbps. Repeating the experiment with UDP
produced similar results.

The Wi-Fi power model depends on four system variables:
number of packets transmitted and received per second
(npackets), uplink channel rate (Rchannel), and uplink data
rate (Rdata). Figure 3 shows the Wi-Fi power model. The
Wi-Fi interface has four power states: low-power, high-
power, ltransmit, and htransmit. Ltransmit and htransmit
are states the network card briefly enters when transmitting
data. After sending the data, the card returns to its previ-
ous power state. When transmitting at high data rates, the
card is only briefly in the transmit state, i.e., approximately
10–15ms per second. The time for low-power transmit state
is even shorter. The Wi-Fi component power consumption
in either transmitting state is approximately 1,000mW. The
low-power state is entered when the Wi-Fi interface is nei-
ther sending nor receiving data at a high rate. Power con-

low high
htrans-

mit

Traffic more

than 15

packets

Traffic less

than 8

packets

Data to

send

No data

to send

ltrans-

mit

No data

to send

Data to

send

Figure 3: Wi-Fi interface power states.

IDLE CELL_FACH CELL_DCH

UL/DL queue size
> threshold

Inactivity timer 1 Inactivity timer 2

Has data to send
RACH (UL)
FACH (DL)

Figure 4: 3G interface power states.

sumption in this state is 20mW. Transition from low-power
state to high-power state happens when more than 15 pack-
ets are transmitted or received per second. Interestingly,
packet rate, not bit rate, determines the power state. The
value of npackets must drop to 8 per second to return to
the low-power state, i.e., the system has hysteresis. In the
high-power state, the power consumption is 710mW.

To verify our claim that at a particular channel rate and
packet rate, Wi-Fi interface power consumption is indepen-
dent of bit rate, we repeat the experiments with packet size
varying from 0B to 1KB, in 100 byte intervals. We observe
that the packet size does not influence power consumption
given fixed channel and packet rates. However, when the
channel rate is low, more time is spent in the very high power
consumption transmitting state, given the same amount of
data transmitted. The Wi-Fi interface power consumption
in high-power state is modeled as follows:

βWi-Fi h = 710 mW + βcr (Rchannel) × Rdata and (1)

βcr (Rchannel) = 48 − 0.768 × Rchannel . (2)
Cellular: The cellular interface model is derived by send-

ing UDP packets between a smartphone and a local server
via the T-Mobile UMTS 3G network. Packet sizes vary from
10B to 1KB. For each packet size, we vary the delay between
transmissions from 0 s to 12 s in 0.1 s intervals. Results are
similar for TCP packets. The following model does not con-
sider signal strength, but this is a focus of our current work.

The measured data are consistent with the finite state
machine based power model shown in Figure 4. The model
depends on transmit and receive rate (data rate) and two
queue sizes. It contains three important states for the com-
munication channel between base station and cellular inter-
face [13].

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
T

T
 (

s
)

Download

Test 1
Test 2
Test 3

Figure 5: TCP handshake RTT.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
T

T
 (

s
)

Download

Test 1
Test 2
Test 3

Figure 6: HTTP GET RTT.

CELL DCH : In this state, the cellular interface has a ded-
icated channel for communication with the base station. It
can therefore use high-speed downlink/uplink packet access
(HSDPA/HSUPA) data rates, resulting in a power consump-
tion of 570mW for the cellular interface. When there is no
activity for a fixed period of time (inactivity timer 2), the
cellular interface enters the CELL FACH state.

CELL FACH : In this state the cellular interface shares a
communication channel to the base station. It can access
the random/forward access (CELL RACH /CELL FACH)
common channels. Its data rate is only a few hundred
bytes per second. CELL RACH is an uplink channel and
CELL FACH is a downlink channel. Cellular interface
power consumption in this state is 401mW. If there is a
lot of data to be transmitted, the cellular interface enters
the CELL DCH state. Transition from CELL FACH to
CELL DCH is triggered by changes in the downlink/uplink
queue sizes maintained for these two states in the radio net-
work controller. Our measurements indicate state transition
thresholds of 151 bytes for the uplink queue and 119 bytes
for the downlink queue. Once either queue size exceeds its
threshold, CELL DCH is entered. If idle for a sufficient
duration (inactivity timer 1), the IDLE state is entered.

IDLE : In this state the cellular interface only receives pag-
ing messages and does not transmit data. The power con-
sumption is 10mW.

In order to infer the inactivity durations resulting in state
transitions for T-Mobile’s UMTS 3G network, we repeatedly
download an 80KB file using HTTP 30 times with a period
that increases from 1–29 seconds in one-second intervals,
recording the timestamp for each packet. The experiment is
repeated 3 times. Before each transmission, the connection
is left idle for 30 seconds to allow the cellular interface to
enter the idle state. We calculate two Round Trip Times
(RTTs) at the beginning of each download. The first RTT
is the time between sending out a SYN packet and receiv-
ing a SYN-ACK packet during TCP connection set up. The

second RTT is the time between sending the HTTP Get re-
quest and receiving the first data packet. Figures 5 and 6
show the first and second RTTs calculated for each down-
load. Based on these figures, we can infer the times at which
state changes occur due to inactivity.

In Figure 5, the RTTs of download 11, as well as those
of subsequent downloads, are equal to the RTT of the first
download, which starts from the idle state. Hence the sum
of the two inactivity timers is 10 seconds. Figure 5 indicates
that the RTTs of downloads 7 and 8 are larger than those
of downloads 2–6. This is due to the delay of the state
demotion from CELL DCH to CELL FACH. Figure 6 shows
that downloads 2–6 have smaller RTTs than the others; the
other downloads experienced delay in state promotion from
CELL FACH to CELL DCH. We conclude that inactivity
timer 1 is initialized to 6 seconds and inactivity timer 2 is
initialized to 4 seconds.

Audio: We modeled the audio interface by measuring the
power consumption when it is not used, and when an audio
file is played at different volumes. The measured data (see
Table 2) indicate that audio interface use influences power
consumption but speaker volume does not. We hypothesize
that the increased power consumption during audio output
is due to activating a digital signal processor and/or speaker
amplifier.

3.3.1 Regression-Based Approach

After collecting power traces for hardware components un-
der control of our training software, we use multi-variable re-
gression to minimize the sum of squared errors for the power
coefficient.

0

B

@

P0

P1

· · ·
Pn

1

C

A
= β1 ·

0

B

@

U01

U11

· · ·
Un1

1

C

A
. . . + βm ·

0

B

@

U0m

U1m

· · ·
Unm

1

C

A
+ c. (3)

In this equation, Uij represents system variable i in the jth
state. Pj is the power consumption when all system vari-
ables are in the jth state. The inputs for regression are
the system variables and the outputs are power consump-
tions and power coefficients βi. Constant c is the minimum
system power consumption. Note that Equation 3 only rep-
resents a linear relationship between system variables and
power consumption. However, this is insufficient for some
system variables, e.g., processor frequency. In Table 2, we
use a zero-one indicator associated with a power coefficient
to represent the non-linear relationship between frequency
and power consumption.

4. INTRA- AND INTER-PHONE

POWER CONSUMPTION VARIATION
We previously explained the construction of a power

model for an ADP1 phone. In order to determine how
general the power model generated for one phone is, we
compared models for different instances of the same type
of phone, and models for different types of phones. In this
section, we characterize two ADP1 phones and four ADP2
(HTC Magic) phones. HTC Magic has the same processor
and LCD specifications as the ADP1 (HTC Dream), but a
different cellular interface [14].

Table 3 shows the inter- and intra-type power model varia-
tion for ADP1 and ADP2 phones. The intra-type variation
is the standard deviation normalized by the mean of the
sample phones of the same type. The inter-type variation is
the difference between the means of the samples for the two
types of phones. Note that the power model parameters in

Table 3: Variation of Power Models Among Phones

Variation (%) Intra-ADP1 Intra-ADP2 Inter-type

CPU
βuh 1.46 9.6 -23.16

βCPU 9.05 9.20 33.28
LCD βbr 1.56 2.5 -28.13

Wi-Fi
βWi-Fih

1.31 3.55 2.86

βWi-Fil
4.89 4.86 -31

Cell
3GDCH 1.03 1.73 62.01
3GFCH 2.80 2.94 27.42

GPS
GPSon 1.35 3.01 -5.12
GPSsl 2.48 3.82 -11.50

Audio βaudio 3.31 2.57 -59.37

the table can also be seen as power measurements for a par-
ticular workload, i.e., variation in power model parameters
is linearly related to prediction error. For example, for an
application using the audio device, we expect to see less than
4% prediction error from using the power model derived for
an ADP1 to predict audio device power consumption for
another ADP1. These data provide some support for the
following conclusions.

First, inter-type variation is significant. Among all the
hardware components, the power models for cellular inter-
faces differ the most, with variation of 62% between ADP1
and ADP2. This result is consistent with data from the En-
vironment Working Group [15], which shows that the ADP2
has greater cellular interface radiation than the ADP1. In-
terestingly, although ADP1 and ADP2 have the same LCD
display specifications, the power model parameters differ by
more than 20%. We speculate that the LCD display in the
ADP2 is a more energy-efficient part with the same display
quality specifications.

Second, intra-type variation is small. We presently have
few intra-type power model samples. To draw a tenta-
tive conclusion, we calculated the confidence interval for
the intra-type sample variance under the assumption that
the distribution of power consumption differences between
phones has a Gaussian distribution. With 95% confidence,
the maximum intra-type variance exceeds 10.4% for no com-
ponent. This conclusion is tentative because we have not
demonstrated that the power consumption difference distri-
bution is Gaussian.

5. BATTERY STATE BASED AUTOMATED

POWER MODEL GENERATION
We have shown that the variation between power models

for different types of phones is significant. This necessitates
building a new power model for each type of phone. Cur-
rent manual measurement based modeling techniques are
time-consuming and require access to power measurement
instruments. Ideally, it would be possible to quickly and
conveniently generate accurate power models for new types
of phones without access to special equipment.

We propose a power model generation technique that uses
knowledge of battery discharge behavior, and the built-in
battery voltage sensors in many embedded systems, to deter-
mine the average power consumption resulting from placing
components into different power states. This power charac-
terization technique does not require external power mea-
surement equipment. We now give a brief tutorial on the
properties of lithium-ion batteries, which will provide a foun-
dation for explaining the proposed power model generation
technique.

 3400

 3500

 3600

 3700

 3800

 3900

 4000

 4100

 4200

 0 10 20 30 40 50 60 70 80 90 100

V
o

lt
a

g
e

 (
m

V
)

State of Discharge (%)

Figure 7: Discharge curve of ADP2 lithium-ion battery.

Vint

Rint

Rload
Vout

Battery Phone

Figure 8: Equivalent circuit for battery.

5.1 Battery Basics
Lithium-ion batteries are popular for portable embedded

systems due to their high energy-to-weight ratios, long ser-
vice lifetimes, and low self-discharge currents.

The voltage of a lithium-ion battery changes during dis-
charge, allowing energy depletion rate (power consumption)
to be estimated based on changes to observed voltage. We
now explain the reasons for and properties of this voltage
change. During discharge, current within the battery is car-
ried by lithium ions (Li+) moving from negative to positive
electrodes, through the non-aqueous electrolyte and sepa-
rator diaphragm [16]. Figure 7 shows the discharge curve
of the lithium-ion battery in an ADP2 phone with a (rela-
tively low) discharge current of 64.5mA. The state of dis-
charge (SOD) is the percent of the rated battery energy that
has been discharged. As shown in the figure, the discharge
curve is monotonically decreasing. Note that both the en-
ergy capacity and the discharge curve change with discharge
current, temperature, and battery age [17], which may po-
tentially influence the accuracy of the proposed technique,
as we will discuss in Section 5.2.

The internal impedance of a battery and its load (i.e., a
phone) influence its output voltage. A battery can be mod-
eled as a variable resistor in series with a variable voltage
source, as shown in Figure 8. Rload is the equivalent re-
sistance of the phone, Rint is the internal resistance of the
battery, and Vint is the internal voltage of the battery. Due
to the voltage drop across Rint , the terminal voltage (Vout)
is lower than Vint . Vint and Rint can be modeled as functions
of SOD.

5.2 Battery State Based Model Generation
The main idea of the battery state based power model gen-

eration technique is to use the training software described
in Section 3 to control phone component power and activ-
ity states. The phone components are held in a particular
state for a significant period of time and the change in bat-
tery SOD is determined using the built-in battery voltage
sensor, allowing an estimate of the power consumption for
that power management and activity state. At this point,
the regression technique described in Section 3 can be used
to build a power model. One question remains: how can
the battery voltage readings be converted into power con-
sumption values? To achieve that, we need to determine the

SOD (i.e., total consumed energy) variation within a testing
interval based on the sensed voltages:

P × (t1 − t2) = E × (SOD(V1) − SOD(V2)), (4)
where P is the average power consumption in time interval
[t1, t2], E is the rated battery energy capacity, and SOD(Vi)
is the battery state-of-discharge at voltage Vi (i is 1 or 2).
The following challenges remain for the proposed technique.

Determining the SOD based on voltage: As shown
in Section 5.1, the present voltage can be used for an inverse
lookup of SOD based on the discharge curve. However, there
is a potential problem with this idea. The discharge curves
of different batteries may vary. Using the same look-up table
for all batteries may be inaccurate. We therefore character-
ize the discharge curve for each battery separately. During
characterization, the training software discharges the bat-
tery from fully charged to completely discharged states using
a constant discharge current, thereby maintaining a linear
relationship between SOD and discharging time. A logger
runs in background to record the battery output voltage.
Note that even for the same phone, the discharge curve may
vary with temperature and aging. To eliminate the effect of
these external factors, we recommend that characterization
be conducted at room temperature (i.e., 73–78➦F), in which
range the average variance of discharge curve is 4.3%. We
acquire the variance by comparing the corresponding volt-
ages at uniformly distributed samples of SOD on the SOD
curves under the highest (112.2➦F) and lowest temperature
(89.6➦F) reached by our training suites.

We use a piece-wise linear function to model
the non-linear relationship between SOD and bat-
tery voltage. To derive the function, we traverse
{(SOD1, voltage1

), · · · , (SODn, voltagen)}, which is
ordered by increasing voltage values. Each additional SOD
and voltage tuple is grouped with the data points on the
most recent line segment and linear regression fitting is
used. If the maximum error returned by regression is larger
than an error threshold, in our case 0.1%, we start a new
line segment at the current point.

Determining the energy capacity E: As shown in
Equation 4, E is needed to determine power consumption.
However, nominal energy capacity may change due to aging
and discharge rate. There are two potential solutions to the
aging problem. A user with a new battery (e.g., an early
adopter wanting to characterize a new type of phone for the
first time) can read E from the battery label. For a user
with old battery, it would instead be necessary to determine
the battery energy based on knowledge of system power con-
sumption in some state, e.g., the maximum CPU power con-
sumption. Note that it would be possible to build a power
model for all the components in a new phone without know-
ing the battery initial energy or the power consumption of
any component. However, the power consumptions in this
model would be relative to the battery energy, i.e., knowing
absolute component power consumptions requires knowledge
of the absolute value of some energy or power consumption
number within the model.

Different discharge rates result in different battery energy
capacities. We quantified the error resulting from assum-
ing that the battery energy capacity is independent of dis-
charge rate by using the lowest and highest discharge rates
the phone can produce during discharge curve characteriza-
tion. For our ADP2 battery, this results in less than 2.4%
error in power consumption estimates.

The impact of internal resistance: Due to internal
battery resistance, the shape of the discharge curve depends

on the discharge current. As a result, even if the internal
voltage source has constant voltage, i.e., the battery has
the same SOD, the terminal voltage depends on discharge
current. Worse yet, the internal resistance depends on SOD.
To eliminate the impact of internal resistance, we switch
all components of the phone to their low-power modes to
minimize discharge current when taking a voltage reading.
This minimizes voltage drop across Rint in Figure 8, thereby
minimizing the difference between Vout and Vint . We used a
voltmeter to verify that Vint is within 0.03V of Vout under
these conditions.

Some phones that have recently started to appear on the
market are equipped with built-in current sensors. This sim-
plifies determining the power consumption for each compo-
nent power state. However, built-in current sensors are not
yet common, so relying on their presence reduces the gener-
ality of a power modeling technique.

6. POWER MODEL VALIDATION
In this section, we evaluate the accuracies of the meter-

based (see Section 3) and battery-based (see Section 5)
power models. We first evaluate the meter-based model
when running popular applications. Then, we explain the
implementation of the proposed battery-based model con-
struction technique and evaluate the resulting model by
comparing it with the meter based model.

6.1 Accuracy Analysis for the Meter-Based
Power Model

We validated the power model on six popular applications.

• Break the Block: A game that uses CPU, LCD, and
Audio.

• Google Talk: An instant message application that uses
CPU, LCD, Wi-Fi/3G, and Audio.

• Google Maps: A web mapping application that uses
CPU, LCD, Wi-Fi/3G, and GPS.

• The Weather Channel: A weather forecast application
that uses CPU, LCD, Wi-Fi/3G, and GPS.

• YouTube: A web-based video sharing application that
uses CPU, LCD, and Wi-Fi/3G.

• Browser: The default web browser on Android that
uses CPU, LCD, and Wi-Fi/3G.

We repeated the experiment under the following conditions.
We used full brightness for Google Maps, Break the Block,
and Gtalk; brightness level 102 for YouTube; brightness level
210 for The Weather Channel; and brightness level 36 for
Browser. We enabled 3G in Gtalk and used Wi-Fi for all
other applications.

To evaluate the accuracy of the model, we used two error
metrics. abs avg is defined as the average of the absolute
values of the errors, i.e.,

˛

˛

˛

˛

measured − predicted

measured

˛

˛

˛

˛

. (5)

To estimate the accuracy of the model when estimating the
impact of software design on phone battery lifespan, we used
another metric, avg , i.e.,

measured − predicted

measured
(6)

This metric better gauges accuracy predicting the power
consumption over long time spans.

Figure 9 shows the modeled and measured power con-
sumptions for each application. Error histograms are also

 1100
 1300
 1500
 1700
 1900

 0 20 40 60 80 100 120 140
P

o
w

e
r

(m
W

)
Time (s)

Google Talk

Modeled
Measured

 30
 60
 90

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n

c
y

Error proportion

Error distribution

abs avg: 6.90%

avg: 2.54%

(a)

 1100
 1300
 1500
 1700
 1900

 0 20 40 60 80 100 120 140

P
o

w
e

r
(m

W
)

Time (s)

Break the Block

Modeled
Measured

 20
 40
 60
 80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n

c
y

Error proportion

Error distribution

abs avg: 2.73%
avg: -0.65%

(b)

 1200

 1600

 2000

 2400

 0 20 40 60 80 100 120 140

P
o

w
e

r
(m

W
)

Time (s)

Google Map

Modeled
Measured

 30
 60
 90

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n

c
y

Error proportion

Error distribution

abs avg: 7.01%

avg: 1.56%

(c)

 1200
 1600
 2000
 2400

 0 20 40 60 80 100 120 140 160 180

P
o

w
e

r
(m

W
)

Time (s)

The Weather Channel

Modeled
Measured

 30
 60
 90

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n

c
y

Error proportion

Error distribution

abs avg: 9.92%
avg: 1.66%

(d)

 700
 1000
 1300
 1600

 0 10 20 30 40 50 60 70 80

P
o

w
e

r
(m

W
)

Time (s)

Browser

Modeled
Measured

 20

 40

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n

c
y

Error proportion

Error distribution

abs avg: 8.96%
avg: 2.25%

(e)

 900
 1200
 1500
 1800
 2100

 0 20 40 60 80 100 120 140

P
o

w
e

r
(m

W
)

Time (s)

YouTube

Modeled
Measured

 20
 40
 60
 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n

c
y

Error proportion

Error distribution

abs avg: 9.81%

avg: -2.44%

(f)

Figure 9: Power profiles for selected applications.

shown. The figures show that the average long-term error
(avg) is less than 2.5% over the application’s lifespan and
that average error (abs avg) is less than 10% for 1 second
intervals.

We also measured the power overhead of the on-line power
consumption estimation technique. It is only 80mW, an
order of magnitude lower than the power consumption of
high-power states of most smartphone components.

6.2 Implementation of the Automatic
Battery-Based Model Generation Tech-
nique

The power modeling process may be automated as de-
scribed in Figure 11. As described in Section 5, constructing
the battery discharge curve requires three steps.

1. Obtain the battery discharge curve for each individual

component. The battery starts in a fully charged state.
We characterize the discharge curve individually for
each phone.

2. Determine the power consumption for each component
state. In this step, the state of a single component is
varied while other components are kept in low-power
states. In order to determine the power consumption
for each power state, the battery voltage at the begin-
ning and the end of the power state discharge interval
are recorded. The phone is placed in a low-power state
immediately before taking a voltage reading to elimi-
nate the impact of the voltage drop across the battery
internal resistance. We repeatedly measure voltage for
1 minute, and discharge the battery for 15 minutes
between measurement intervals.

3. Perform regression to derive the power model. After

−0.5 0 0.5
0

50

100

150

200

250

F
re

q
u

e
n

c
y
 n

u
m

b
e

r

(a) 15 minutes

−0.2 −0.1 0 0.1 0.2
0

50

100

150

200

250

300

F
re

q
u

e
n

c
y
 n

u
m

b
e

r

(b) 30 minutes

−0.2 −0.1 0 0.1 0.2
0

50

100

150

200

250

F
re

q
u

e
n

c
y
 n

u
m

b
e

r

(c) 45 minutes

Figure 10: Error distribution for LCD.
Get battery

discharge

curve

Keep all device

in one power

state for 15

minutes

Put in low

power state for

1 minute

Exercise devices

Regression to

derive power

model

Figure 11: Battery SOD based power model construction.

the battery voltage differences for each power state dis-
charge interval are collected, we use them to calculate
average power consumption within the 15-minute in-
tervals. We then use regression to generate the power
model

.
The discharge interval for each power state is difficult to

select. Minimizing this duration makes the characterization
process more convenient. However, the interval must be long
enough for the change in battery voltage to exceed noise. In
order to determine the optimal interval, we do statistical
analysis of the model error distribution as a function of bat-
tery discharge interval per power state. Figure 10 shows the
error distribution of the LCD model. We did this analysis
for all components.

To estimate the error distribution of the battery SOD
based technique, one could repeat the entire model construc-
tion process many times with different discharge intervals.
However, there is a more efficient way to gather the same
data. Bootstrapping is a technique to treat an initial set of
samples as a stand-in for the population and to re-sample
from it repeatedly, with replacement. In our experiment,
we collect 6 samples at each LCD brightness with a dis-
charge duration of 15 minutes. We then randomly select
one sample for each brightness level. By doing regression on
these randomly selected samples, we are able to derive an
LCD power model. The error is defined as the percentage
difference between the newly-derived model and the meter-
based model. Repeating this process 1,000 times allows
us to determine the error distribution for models generated
using 15-minute battery discharge intervals. To determine
the distribution for 30-minute intervals, we randomly select
and average two 15-minute sample points without replace-
ment at each brightness level. Note that the experiment was
designed to minimize correlation between different samples

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

CPU LCD GPS Wifi 3G Audio

E
rr

o
r

fr
a

c
ti
o

n

Hardware component

Quartiles

Figure 12: Error distributions for components.

for the same power state; we repeatedly cycled through all
power states six times.

We can draw two conclusions from Figure 10. First, the
mean of the errors for all discharge intervals deviates from
zero by no more than 0.4%. This suggests that, given an ad-
equate battery discharge interval, the battery-based model
is as accurate as the meter-based model. Second, the vari-
ance of the distribution decreases with longer intervals. For
a 45-minute interval, more than 92% of trials have errors
less than 10%.

These two conclusions suggest two alternative model-
construction system designs. Users can be allowed to choose
a trade-off between model construction time and accuracy.
We expect that most users would allow a power model to
be automatically constructed while they sleep (6.5 hours for
a 15-minute battery discharge interval). Another alterna-
tive is to have a central web-based system gradually learn
the model from samples collected from multiple users. Each
user might characterize a phone using a 15-minute battery
discharge interval and submit the data. The data for mul-
tiple users of the same type of phone could be combined to
produce an accurate model. Note that model construction
would only need to be done once for a new type of phone,
and that automating this process and removing the need
for special power measurement equipment would represent
a significant improvement on current conditions.

6.3 Accuracy Analysis for the Battery-Based
Power Model

Figure 12 shows the error distributions of the battery-
based power model using a 15-minute battery discharge in-
terval. The error distribution is generated as described in
Section 6.2. The box boundaries indicate the 25th and 75th
percentiles and the line span indicates the maximum posi-
tive and negative errors. The line in the middle of the box
is the mean of all errors.

(a) Main view (b) Chart view

Figure 13: PowerTutor interface.

7. POWER ESTIMATION TOOL
This section describes PowerTutor [18], an online power

estimation system that has been implemented for Android
platform smartphones. PowerTutor provides accurate, real-
time power consumption estimates for power-intensive hard-
ware components including CPU and LCD display as well
as GPS, Wi-Fi, audio, and cellular interfaces. It uses power
models generated using the proposed manual (see Section 3)
or automated (see Section 5) characterization techniques.
The interface for PowerTutor is shown in Figure 13. Fig-
ure 13(a) shows its configuration screen, with which the dis-
play of on-line power traces can be configured. Figure 13(b)
shows an example display of the power consumption traces
of various hardware components.

PowerTutor has two main purposes:

• Application developers can use PowerTutor to rapidly,
accurately, and conveniently determine the impact of
software design changes on power consumption. It pro-
vides a time series of power consumption estimates
per hardware component, allowing developers to iden-
tify power inefficient behavior, much of which results
from unintentional but inappropriate use of smart-
phone hardware devices.

• Smartphone owners can use PowerTutor to determine
the power consumption characteristics of competing
applications, allowing them to make better informed
decisions about which applications to use or buy. Most
existing application descriptions and reviews do not
mention power consumption. PowerTutor also esti-
mates battery lifespan subject to a particular smart-
phone owner’s actual application usage patterns.

PowerTutor has been released on the Android market and
has been used by more than 6,000 people.

8. CONCLUSION
This paper has described an on-line power estimation and

model generation framework. The PowerTutor power es-
timation tool informs smartphone developers and users of
the power consumption implications of decisions about ap-
plication design and use. The power model in PowerTutor
includes six components: CPU and LCD as well as GPS,
Wi-Fi, audio, and cellular interfaces. For 10-second inter-
vals, it is accurate to within 0.8% on average with at most
2.5% error. A software implementation of the power estima-
tion tool has been publicly released on the Google Android

Application Market. This paper has also described Power-
Booter, an automatic battery state of discharge based power
model generation technique. PowerBooter power model con-
struction without using a power meter. The result indicates
that the power model built with PowerBooter is accurate to
within 4.1% of measured values for 10-second intervals.

9. REFERENCES
[1] T. Cignetti, K. Komarov, and C. Ellis, “Energy

estimation tools for the Palm,” in Proc. of the ACM
Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2000, pp. 96–103.

[2] A. Shye, B. Scholbrock, and G. Memik, “Into the wild:
studing real user activity patterns to guide power
optimizations for mobile architectures,” in Proc. Int.
Symp. Microarchitecture, 2009, pp. 168–178.

[3] R. Joseph and M. Martonosi, “Run-time power
estimation in high-performance microprocessors,” in
Proc. Int. Symp. Low Power Electronics & Design,
Aug. 2001, pp. 135–140.

[4] C. Isci and M. Martonosi, “Runtime power monitoring
in high-end processors: Methodology and empirical
data,” in Proc. Int. Symp. Microarchitecture, Dec.
2003, pp. 93–104.

[5] F. Bellosa, “The benefits of event-driven energy
accounting in power-sensitive systems,” in Proc.
Special Interest Group on Operating Systems European
Wkshp., 2006, pp. 37–42.

[6] G. Contreras, et al., “XTREM: a power simulator for
the Intel XScale,” in Proc. Conf. Languages,
Compilers, and Tools for Embedded Systems, June
2004, pp. 115–125.

[7] J. Flinn and M. Satyanarayanan, “PowerScope: a tool
for profiling the energy usage of mobile applications,”
in Proc. Wkshp. on Mobile Computer Systems and
Applications, 1999, p. 2.

[8] M. Dong and L. Zhong, “Sesame: A self-constructive
virtual power meter for battery-powered mobile
systems,” Tech. Rep., 2010.

[9] S. Gurun and C. Krintz, “A run-time, feedback-based
energy estimation model for embedded devices,” in
Proc. Int. Conf. Hardware/Software Codesign and
System Synthesis, Oct. 2006, pp. 28–33.

[10] “Monsoon power monitor,” http:
//www.msoon.com/LabEquipment/PowerMonitor/.

[11] “MSM7000 chipset,” http://www.qualcomm.com/
products services/chipsets/index.html.

[12] “Android SDK reference,” http:
//developer.android.com/reference/packages.html.

[13] H. Holma and A. Toskala, HSDPA/HSUPA for
UMTS: High Speed Radio Access for Mobile
Communications. John Wiley & Sons, 2006.

[14] “HTC Magic specification,” http:
//www.htc.com/www/product/magic/overview.html.

[15] “Environment working group data,”
http://www.ewg.org/cellphoneradiation/
Get-a-Safer-Phone?&allavailable=1&order=sar.

[16] D. Linden and T. B. Reddy, Handbook of Batteries.
MacGraw-Hill, 2002.

[17] “Battery and energy characteristics,”
http://www.mpoweruk.com/performance.htm.

[18] “PowerTutor,” http://powertutor.org.

http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.qualcomm.com/products_services/chipsets/index.html
http://www.qualcomm.com/products_services/chipsets/index.html
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://www.htc.com/www/product/magic/overview.html
http://www.htc.com/www/product/magic/overview.html
http://www.ewg.org/cellphoneradiation/Get-a-Safer-Phone?&allavailable=1&order=sar
http://www.ewg.org/cellphoneradiation/Get-a-Safer-Phone?&allavailable=1&order=sar
http://www.mpoweruk.com/performance.htm
http://powertutor.org

	Introduction
	Related Work
	Power Model
	Smartphone Hardware Components and Experimental Setup
	Selecting Hardware Components and System Variables
	Training Suites to Derive Power Model
	Regression-Based Approach

	Intra- and Inter-Phone Power Consumption Variation
	Battery State Based Automated Power Model Generation
	Battery Basics
	Battery State Based Model Generation

	Power Model Validation
	Accuracy Analysis for the Meter-Based Power Model
	Implementation of the Automatic Battery-Based Model Generation Technique
	Accuracy Analysis for the Battery-Based Power Model

	Power Estimation Tool
	Conclusion
	References

