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ABSTRACT

Energy leaks occur when applications use energy to perform use-
less tasks, a surprisingly common occurrence. They are particularly
important for mobile applications running on smartphones due to
their energy constraints. Energy leaks are difficult to detect and
isolate because their negative consequences are often far removed
from their causes. Few tools are available for addressing this prob-
lem. We have therefore developed ADEL (Automatic Detector of
Energy Leaks). ADEL consists of taint-tracking enhancements to
the Android platform. It detects and isolates energy leaks result-
ing from unnecessary network communication by tracing the direct
and indirect use of received data to determine whether they ever
affect the user. We profiled 15 applications using ADEL. In six of
them, energy leaks detected by ADEL and verified by us account
for approximately 57% of the energy consumed in communication.
We identified four common causes of energy leaks in these appli-
cations: misinterpretation of callback API semantics, poorly de-
signed downloading schemes, repetitive downloads, and aggressive
prefetching.

Categories and Subject Descriptors

D.2 [Software Engineering]: Design Tools and Techniques

General Terms

Design

Keywords

Energy leaks, energy bugs, mobile applications

1. INTRODUCTION
Energy is a scarce resource for smartphone users. Available

energy is constrained by limits on battery size and weight, and
improvements in battery technology have historically been slow.
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Moreover, energy demands often increase with the addition of new
hardware and software features. To make matters worse, operat-
ing systems and applications frequently consume energy to per-
form tasks that are ultimately useless, a phenomenon we call energy

leaks. Smartphone users commonly complain about the effects of
energy leaks. For example, many iPhone users reported a sudden
drop in battery life from 100 hours standby to 6 hours standby due
to new energy leaks in Apple’s iOS 5 [1]. Android users also expe-
rienced bad battery life on various type of devices [2].

Energy leaks are in general difficult to detect and isolate [3].
There are two main reasons for this difficulty. First, it is much more
difficult to determine how much energy an application leaks than to
determine how much energy it uses because some applications nec-
essarily consume a lot of energy while wasting little, e.g., Google
Maps. Second, there can be a wide range of causes for unintended
energy use, e.g., incorrect API use or poor application design. As
we will demonstrate in Section 7, even mature and carefully devel-
oped operating systems or applications can contain energy leaks.

An energy leak is the use of energy on activities that never di-
rectly or indirectly influence the user-observable output of the smart-
phone. More specifically, if removing a task from the application
never directly or indirectly changes any output presented to users,
the task is unnecessary and the energy consumed by it is wasted.
We consider energy leaks with two sources. The first source is
unambiguous programming errors, e.g., frequently accessing sen-
sor data without using it. The second source is reliance on pre-
dictions that have the potential to be too inaccurate for their in-
tended purposes, as can happen with applications that use aggres-
sive prefetching. In addition to identifying unambiguous energy
bugs, our work can also determine the percent of energy wasted
as a result of prefetching misprediction and identify the particu-
lar prefetched data elements that are not ultimately used, thereby
supporting improvements to predictors or adaptation of prefetch-
ing aggressiveness.

We now describe the design, implementation, and evaluation of
ADEL (Automatic Detector of Energy Leaks). ADEL is an exten-
sion of the Android platform that tracks the information flow of net-
work traffic through applications. We focus on detecting and iso-
lating energy leaks in network communication for mobile applica-
tions. We choose to focus on network communication because net-
work communication, including both Wi-Fi and 3G interface, ac-
counts for 39% of system-wide energy consumption. More impor-
tantly, developers have a hard time optimizing for network energy
efficiency, resulting in substantial energy waste [4]. By tracking
all the computations that depend on each network packet, ADEL



is able to determine whether or not a packet’s transmission con-
stitutes an energy leak. ADEL helps developers isolate the causes
of energy leaks by showing them the arrival times and contents of
unused packets. ADEL uses dynamic taint-tracking analysis to de-
tect energy leaks. It automatically labels each data object with a
tag when it is first downloaded, then follows and propagates the tag
when new data objects are derived from the tainted object. Thus,
system outputs can be associated with the downloaded data that in-
fluenced them. ADEL further provides developers with insight on
the use of each packet, associated with the packet arrival time and
its content, allowing design flaws resulting in energy waste to be
more easily detected and isolated.

We evaluated the effectiveness of ADEL by using it to profile
five open source applications and three closed source applications.
For the open source applications, we confirmed the wasted network
communication by manually checking the source code to determine
whether ADEL correctly labeled each packet. For the closed source
applications, we manually correlated the network packet labeled by
ADEL with the displayed content.

Our ADEL-supported analysis of 15 applications revealed four
categories of energy leaks.

1. Misinterpretation of callback APIs that results in waste-
ful downloads. For example, an application containing a separate
downloading thread might not kill the thread properly, allowing the
download to continue after the application exits the foreground.

2. Inefficient data refreshing behavior that ignores the appli-
cation and device status. For example, a widget might be updated
whether or not the display is currently on.

3. Repetitive downloads. For example, an application might
download the same content every time it updates because it fails to
cache downloaded content.

4. Aggressive prefetching. For example, the prefetching scheme
of an application can be so aggressive that significant energy is
wasted without improving the user’s experience.

Eliminating energy leaks of the first three kinds reduces the net-
work energy consumption by approximately 62.1% while reducing
energy leaks in prefetching can potentially reduce the network en-
ergy consumption by 52.7%. In summary, ADEL helps identify
and isolate communication energy leaks.

This work makes the following contributions.
• We provide a definition of energy leaks: the energy con-

sumed by actions that never influence any output produced by a
system.

• We describe ADEL, a dynamic taint-tracking infrastructure
that identifies network energy leaks. ADEL tracks data originating
at the network interface through applications to their eventual use
or deletion. Automatically determining whether particular network
data are ever used can help applications developers and users iden-
tify, isolate, and fix energy leaks. ADEL is the first system that uses
taint-tracking for energy efficiency analysis.

• We used ADEL to profile 15 applications. Six of them have
energy leaks that account for more than 57% of their communica-
tion energy use. By further examining these leaky applications, we
identified four common causes. Our analysis may be useful for
both application and platform developers.

The rest of the paper is organized as follows. Section 2 describes
related work. Section 3 formally defines energy leak and describes
the problem ADEL seeks to solve. Section 4 gives an illustrative
example of ADEL’s use and explains its design challenges. Sec-
tion 5 describes the implementation of ADEL in detail. Section 6
explains our efforts to validate ADEL and points out its limitations.
Section 7 describes our analysis of energy leaks in 15 applications

and indicates major classes of design characteristics resulting in
energy leaks. Section 8 concludes the paper.

2. RELATED WORK
We use dynamic taint analysis to identify energy leaks due to

network communication. This section summarizes prior work on
the following related topics: energy debugging, network energy re-
duction, and taint analysis.

Energy debugging is an emerging research area, with few prior
publications. The work by Pathak et al. [3, 5] is closest to ours.
They first provide a taxonomy of energy bugs based on posts to
mobile user forums and operating system bug repositories. They
recognize four classes of energy bugs: hardware-related, software-
related, external-condition-triggered, and those of unknown cause [3].
They also provide an automatic method to detect no-sleep bugs,
which arise from mishandling power control APIs by applications
or the operating system, resulting in significant and unexpected en-
ergy drainage [5]. Our work differs by detecting and isolating en-
ergy leaks, a different class of energy bugs.

There has been prior research on reducing energy consumption
due to network communication. This work can be divided into
two major categories: (1) adapting power management schemes
to network traffic [6, 7, 8] and (2) adapting network traffic to power
management schemes [9, 10, 11, 4]. In the first category, Krashin-
sky and Balakrishnan [6] propose to adapt network interface sleep
durations depending on past application network activity. This al-
lows the network interface to sleep for longer periods of time when
there is no activity, thereby reducing the energy consumed receiv-
ing beacons sent from the access point. In the second category,
Armstrong et al. [9] propose to shift polling responsibility from mo-
bile clients to a proxy server so that network traffic can be batched.
This approach prevents the network card from frequently transi-
tioning among power states, allowing it to sleep longer. However,
most prior work assumes that all transmitted data are useful. We
question this assumption and detect network energy waste due to
transmission of useless data. Existing network energy consump-
tion optimization techniques can be applied together with our work:
they are orthogonal or synergistic.

Our energy leak detections and isolation framework uses dy-
namic taint analysis. In particular, we build upon TaintDroid [12],
an extended Android platform that supports system-wide taint track-
ing through the Dalvik Virtual Machine and persistent storage, e.g.,
in files. TaintDroid detects security flaws in mobile applications
by associating tags with sensitive information, e.g., location infor-
mation or phone contacts. Information leaks are detected when
sensitive information leaves the mobile devices, e.g., via the net-
work interface. Our work differs by solving the problem of iden-
tifying communication energy leaks. This new problem definition
requires changes in the representation of tags and method of track-
ing information flow (from network interfaces to eventual display
or deletion). To the best of our knowledge, this is the first time taint
tracking analysis has been used to identify energy leaks.

There are other methods of dynamic taint analysis in virtual ma-
chine and interpreter environments [13, 14, 15]. Haldar et al. [13]
instrumented the Java String class with taint tracking. Xu et al. [14]
instrumented the PHP interpreter source code for dynamic informa-
tion tracking. Both of these papers have the goal of preventing SQL
injection attacks. Chandra and Franz [15] proposed to instrument
Java byte-code to aid control flow analysis in additional to fine-
grained information flow tracking within the Java virtual machine.
These papers all solve security problems. They do not focus on
improving energy efficiency, but their implementations are related
because all use taint tracking.



3. PROBLEM DEFINITION
We define an energy leak as energy consumed that never influ-

ences the outputs of a computer system, e.g., through display in-

terface, audio interface, or network interface. In other words, any
energy consumed by actions that never change system outputs, di-
rectly or indirectly, is wasted. Eliminating such waste cannot cause
observable changes in application behavior. For example, the wid-
get of a news application might frequently update the latest news re-
gardless of whether it is currently visible to the users, e.g., whether
the display is even on or off. From the user’s perspective, these
downloads are useless and waste energy. Eliminating these extra
downloads (e.g., by only downloading when the widget is visible
to users) will not degrade the user’s experience. Prefetching is more
subtle, and we will address it in Section 7.4.

Automatic Detector of Energy Leaks (ADEL) system detects
smartphone application energy leaks due to network downloads by
tracking network data in order to determine which downloads ever
have user-observable effects. We focus on network downloads for
two main reasons. First, network devices, including 802.11 card
and cellular devices, are power-hungry; the two devices together
consume 39% of smartphone. Among the network transmissions,
70% of energy is due to downloads. This is estimated by aggregat-
ing 137 users’ over a month of traces. The traces were generated
by PowerTutor [16], an Android-based power estimation tool that
estimates power consumption every 1 second. Second, application
developers have an especially difficult time optimizing applications
for network energy efficiency due to the complicated power man-
agement characteristics of the network interface [4]. As a result,
a significant amount of energy is wasted in network communica-
tion [4].

The definition of energy leak is general. In practice, it is difficult
to track accurately, as we explain in Section 6.1. However, we
believe it is an appropriate goal to proceed toward.

4. ILLUSTRATIVE EXAMPLE AND DESIGN

CHALLENGES
We designed and implemented a system supporting on-line anal-

ysis of transitive use of downloaded data objects. We anticipate that
this work will be most useful to developers attempting to improve
the energy efficiency of their applications. In this section, we will
first use a simple example to explain the use of our infrastructure.
We will then discuss design challenges.

4.1 Illustrative example
Consider a game that downloads crossword puzzles and displays

them to users. As shown in Figure 1, the game has two major
threads: one downloading puzzles from the Internet and one man-
aging the user interface (UI), including showing the puzzle and tak-
ing user inputs. The downloading thread receives network packets
that contain the grid layout for each game, the hints to each word,
and the solution to each game. It then parses the contents of differ-
ent packets and passes them as messages to the UI thread. The UI
thread first displays the grid based on the messages from the down-
loading thread. Then it displays hints when the user clicks on the
corresponding grid element. When the user finishes and submits
the game, it shows the solution.

To track the use of the downloaded data objects in the cross-
words game, the system first identifies them in the network inter-
face where a tag is associated with each object at the packet level.
These network interfaces are taint sources and the downloaded ob-
jects are tainted. As shown in Figure 1, each type of data object is
associated with a unique tag. During the propagation of the tainted

Figure 1: Crosswords game has two major threads: downloading
and user interface. Tags of packets are propagated to derived data
objects. Eventual use of packets depends on user inputs.

object, the system passes on a tag when one data object is derived
from a tainted one. The shaded area represents the functions the
tainted objects pass through. Finally when tainted objects reach
the taint sink (e.g., the display) they are detected and the tags rep-
resenting the original downloaded data objects are recorded.

4.2 Design challenges
When designing a system to track the use of data objects, we

were faced with the following challenges.
• Downloaded data objects are not necessarily used imme-

diately. In the above example, the hints and solution of each game
may be stored in memory for a long time before the user requires
them. This delay between downloading and use prevents some al-
ternative approaches. For example, tracking data use by first mon-
itoring both the network and display interface simultaneously, then
comparing downloaded content and displayed content is infeasible
due to the time lag. As a result, the monitoring system must be able
to trace data objects through memory until they are used or deleted.

• Data objects can be parsed or processed before they are

displayed. For example, the grid color can be specified using strings
in an XML file. Although the strings are not displayed, they will
influence the color of the output grid. Transitive use of downloaded
data must be considered.

• The use of data objects depends on the dynamic environ-

ment of the application. For example, a valid code path that leads
to the display of the downloaded data objects might rarely or never
be executed during a particular run of the application. As a result,
static analysis of application source code is insufficient to deter-
mine the application’s run-time use of objects. Therefore, we focus
on dynamic analysis.

• The use of data objects depends on the dynamic environ-

ment of the application, e.g., user behavior. As shown in Figure 1,
the use of hints and solutions to the game depend on user behavior.
As a result, static analysis of application source code is insufficient
to fully understand the application’s real-world data use.

• It is necessary to identify the original data object when a

derivative is displayed. Our goal is to help developers to (1) un-
derstand the use of each downloaded data object and (2) identify



potential bugs in their code that produce unnecessary data trans-
mission. Therefore, it is necessary to trace downloaded data ob-
jects and their derivatives for their entire lifespans so that if they are
ultimately displayed, the original downloaded data objects can be
identified. To achieve this, the system needs to associate a unique
ID with each data object and propagate this ID to all its transitive
derivatives.

• Mobile devices are resource constrained. Limits on smart-
phone CPU speed, memory size, and energy capacity makes high-
overhead techniques such as instruction-level taint tracking [17]
less practical than lower-overhead techniques.

5. SYSTEM ARCHITECTURE OF ADEL
The challenges described in the previous section motivate us to

use dynamic taint tracking analysis of downloaded data objects.
The closest existing implementation we found is TaintDroid [12],
an extended Android platform for improving security by identi-
fying the flow of private information. This section first presents
background information on Android that is necessary to under-
stand ADEL, our taint tracking infrastructure. It then provides an
overview of the ADEL system architecture. Finally, we explain
each component of ADEL in detail.

5.1 Background: Android
Android is a Linux-based operating system for mobile devices

such as smartphone and tablets developed by Google. It differs
from other Linux distributions due to an additional layer of abstrac-
tion between user applications and Linux system library, called the
application framework layer. The four major differences between
Android and other Linux distributions follow.

Dalvik virtual machine, Java Native Interface (JNI), and na-

tive interface: Android is composed of a modified Linux kernel
written and compiled to native machine code, with middleware, li-
braries, and APIs written in both Java and native code. Although
development of applications using native machine code is allowed,
most Android applications are written in Java.

Each Java application is compiled to bytecode and runs in the
Dalvik virtual machine (VM) and each Dalvik VM instance con-
tains only one application. The Dalvik VM has its own instruction
set. An interpreter converts Java bytecode into Dalvik code at run
time. ADEL consists of taint tracking code inserted into the inter-
preter.

There are two types of native methods that can be accessed by
Android applications: (1) native methods in the Android frame-
work or system library such as WebKit or SQLite and (2) native
methods stored in shared objects in the application package. All
native methods accessed from a Java-based application must be
called through JNI methods. Application packages containing na-
tive methods account for 5% of applications according to a survey
of the Android market [12] and handling taint tracking through na-
tive code would substantially complicate the taint tracking infras-
tructure. Therefore, ADEL does not cover application-specific na-
tive methods in the taint tracking flow. Note, however, that it can do
information flow tracking in the Java portions of applications that
contain JNI methods as explained in Section 5.3.

Binder: Binder is a specially customized kernel mechanism for
Android to do Inter Process Communication (IPC). In the core of
binder, messages are passed between processes using parcel, a con-
tainer of serialized data objects.

Shared memory: A shared memory region in the Android frame-
work allows sharing between different processes. Note that refer-
ence counting in the shared memory region to prevent deletion of
live objects.

Figure 2: ADEL architecture.

Zygote process: Zygote is the first application process loaded
by the Dalvik VM when the system boots. It maintains memory re-
gions that are shared by multiple applications and spawns all other
Android applications via fork().

5.2 Architecture overview
We now provide an overview of the ADEL system architecture.

ADEL provides on-line monitoring of the use of downloaded ob-
jects by applications. It uses dynamic taint tracking to follow the
information flow during the entire lifespan of the downloaded ob-
ject, from download to use or deletion. As shown in Figure 2, the
taint flow can be decomposed into three phases: taint source, taint

propagation, and taint sink.
Taint source: The network interface is a taint source. We detect

all downloaded data objects and associate a unique tag with each
at packet-level. Each tag is a 32-bit integer that indirectly indicates
(indexes) the size of the packet. Note that packet size is needed to
determine the number of bytes of network transmission associated
with energy leaks. A hash table is used to map tags to packet sizes.
The table is kept in shared memory region and maintained by Zy-
gote. To store tags, we instrument the Dalvik VM to change the
memory allocation and Java class data structures in order to store
an indexing tag adjacent to its corresponding data object.

Taint propagation: During taint propagation, tags are propa-
gated to new variables when they are derived from tainted vari-
ables. Taint propagation happens at variable-level, method-level,
file-level, and message-level. These levels correspond to four sources
for which tags are propagated: interpreted code, JNI and native
code, persistent storage, and IPC. For interpreted code, an alterna-
tive design is instruction-level taint tracking [17]. However, this
fine-grained approach imposes up to 20× performance overhead
for workstations: it is contradicted for resource-constrained mobile
platforms. For JNI and native code, the system retrieves the tags
of the inputs to invoked methods and propagates them to the return
value. This heuristic is used to prevent the overhead of monitoring
native code. For persistent storage, each file is associated with a
tag. Any write of the tainted data will taint the tag of the file and
any data read from the file will be tainted with the same tag. Finally
for IPC propagation, we associate a tag with the message passed be-
tween processes. File-level and message-level propagation permits
false positive. By propagating the tag at multiple levels, we are able
to achieve system-wide taint tracking.

Taint sink: At the taint sink, the output of tainted data is iden-
tified. Every time a tainted object is detected, the original down-
loaded object(s) that influenced the tainted object is logged, based
on its tag. Mobile computers may have multiple output device, e.g.,
video and audio displays. Currently ADEL only supports the video
display interface taint sink, as it was used for displaying the most
network-tainted data in the applications we are aware of. How-
ever, the approach could be easily extended to handle other output



Figure 3: Taint tags are stored adjacent to their data objects in both
stack and heap.

devices. For example, the audio interface can be added by instru-
menting the audio API in the Java framework.

5.3 Implementation
We implemented ADEL on top of TaintDroid [12] with 2,414

lines of code modifications. The adaptation of this infrastructure
for use in energy leak detection required changes to taint tag repre-
sentation, taint propagation rules, taint source, and taint sink.
Tag storage

Figure 3 shows how ADEL stores taint tags in the Dalvik VM.
Tags are associated with five types of data: local variables in method,
method arguments, method return value, class static fields, and
class instance fields. Whenever a new method is invoked, a new
stack frame containing local variables, method arguments, and re-
turn values is constructed. To store their tags, the size of the stack
frame is doubled. This allows us to store an additional 32-bit tag
for each data object. Tags must be retrieved whenever the corre-
sponding data object is operated upon. Therefore, they are stored
adjacent to their corresponding data objects. As shown in Figure 3,
the shaded area represents the added memory for tags. For class
static fields and instance fields stored in the heap, additional mem-
ory is used. A taint tag field is added for static fields while each
instance field is extended by adding a 32-bit tag space adjacent to
it. In the case of arrays and strings, only one tag is associated with
the whole class object. That is to say, any value coming out of a
tainted array or string is tainted. This decision was made to avoid
the overhead of having multiple tags, each associated with one data
element.
Tag representation and propagation logic

In order to determine the presence and causes of energy leaks,
we need to track the flow of each network packet and record the
contribution of tainted variables to each newly derived variable. In
this case, ADEL can work backwards to determine whether each

Figure 4: Example of correct taint tag propagation.

Algorithm 1 Copy taint tag

Require: SrcTag

1: Increase the ref_count of SrcTag

2: DestTag⇐ SrcTag

3: return DestTag

packet ultimately influences displayed content. One common solu-
tion in security research is to use each bit to represent a unique type
of tainted variable and use a bitwise OR operation when merging
variables. Unfortunately, this solution is infeasible for our applica-
tion because it requires one bit for each new tainted variables. Re-
call that each packet represents a new tainted variable. In ADEL,
each tag represents a set of packets that have been used to derive
the corresponding variable as shown in Figure 4. Each packet is
represented by a unique ID, packet_tag. Every time a new variable
is derived from multiple tainted variables, the union of all sets is
taken to derive the new tag.

We use two hash tables in ADEL. One maps packet_tag, the
packet ID, to packet size. The other maps tag to the set of packet_tag
as shown below.

map< i n t p a c k e t _ t a g , i n t s i z e > packet_map ;
map< i n t t ag , s e t < i n t p a c k e t _ t a g >> tag_map ;

A new tag is generated if any of the following conditions holds: (1)
a new data object is downloaded or (2) a new variable is derived
from more than one tainted variable. The allocation of a new tag is
controlled by a unique sequence number. Note that these two maps
are global data structures containing all the tags for any application.
Consequently, we place them in shared memory and modify Zygote
to insert new tags and propagate existing tags.

Taint tags are propagated using the following rules.
• Copy taint tag: When only one tainted object is used to

derive a new variable, e.g., move and single-input instructions, we
copy the taint tag to the newly derived variable so that both vari-
ables have identical sets of packet_tags. Meanwhile, each tag is
associated with a reference counter to record the number of vari-
ables associated with that tag. That reference counting is needed for
copy-on-write when merging taint tags. This algorithm is shown in
Algorithm 1.

• Merge taint tags: When more than one tainted object is
used to derive a new variable, we must take the union of the sets.
This is required for any two-input instructions, e.g., add. As shown
in Algorithm 2, copy-on-write is used to reduce memory overhead.
A new tag and set are only constructed if both of the source vari-
able’s tag have multiple references.
Tag sources and sinks

To determine the percentage of energy leaked, ADEL needs to
track the network packet from downloaded until display. There-
fore, we identify the network interface as the taint source and video
display interface as the taint sink. Because taint tags are stored only
in the interpreted code as explained in Figure 5.3, we instrument the
Java side of the library instead of the native side of the library.

We instrument the receive function in the network Java library to
implement network taint sources. The granularity of tag association
determines the trade-off between tracking accuracy and memory
overhead. Packet-level tracking is chosen over byte-level tracking



Algorithm 2 Merge taint tag

Require: Src1Tag, Src2Tag, tag_map

{Update an old tag or merge to create a new one}
1: if any of Src1Tag or Src2Tag has only one reference count then

2: DestTag⇐ the one in Src1Tag and Src2Tag that has one tag
3: update the set of DestTag by inserting the set of the other

source tag
4: increase the ref_count of DestTag

5: else

6: DestTag⇐ a newly created tag
7: new_set⇐ union of sets of both Src1Tag and Src2Tag

8: insert (DestTag, new_set) into tag_map

9: initialize ref_count of DestTag

10: end if

11: return DestTag

to control overhead. Fortunately, despite of the inaccuracy induced
by this granularity, ADEL still identifies numerous energy leaks in
real applications as explained in Section 7.

The display interface is instrumented as the taint sink, i.e., tainted
objects are logged when they are rendered to the display. We deter-
mine which network packets are useful by tracking the tainted ob-
jects backwards through packet_tags. It is challenging to identify
all tainted object accurately because Android provides application
developers multiple ways to render the display. By performing a
survey of the network-intensive applications in the Android Mar-
ket, we determined that the Canvas class in graphic interface and
LoadListener in Webkit are the two most frequent APIs for even-
tual rendering use by other graphics display APIs. We therefore use
these two APIs as taint sinks in ADEL. Note that WebKit is a com-
plicated rendering engine in which data objects are passed between
native methods and Java methods before display. Our Dalvik-based
taint tracking framework cannot trace through native methods. We
instead use the following heuristic to approximate taint tracking
through native graphics display routines: data objects being passed
to the native WebKit rendering engine will be displayed. We have
not found contradictory examples in the applications we examined;
please note that perfect accuracy is not necessary to achieve our
goal of identifying and isolating energy leaks.
Tag propagation

Taint tags are propagated through four paths: interpreted code,
JNI and native code, persistent storage and IPC.

To track tags through interpreted code, we modify the native
code interpreter in the Dalvik VM to realize the propagation logic.
The native code interpreter is one of two interpreters in the VM. We
modified the native code interpreter because it can be used on any
Android system supporting native code. An alternative would have
been to modify the assembly code interpreter. This interpreter has
the advantage of higher performance but the greater disadvantage
of only being available on a few phone models.

JNI and native code taint tag propagation is handled by manually
instrumenting methods that are necessary for APIs in taint sink and
source or selected benchmark applications. This is mainly because
all taint tags are stored in the interpreted code stack and therefore
once a native method is invoked, the tags cannot be accessed any
more. To handle taint propagation through native code, we instru-
ment code to guarantee one postcondition: if the arguments ac-
cessed are tainted, the return value of native methods is associated
with the new tag that follows the propagation logic. 1098 out of
3024 native methods in Android source code, which do not use ob-
ject references, are covered by this heuristic. Other native methods
are instrumented as needed.

Persistent storage taint tag propagation is handled by associating

each file with one taint tag. This is achieved by using the extended
attribute of the Android file system. That is to say, any byte read
from a tainted file will be tainted with the same tag. This results
in false positives, especially if the file is big, e.g., database. Ide-
ally we would like byte-level filesystem taint propagation logic.
However, this would greatly increase implementation complexity
or require modification of database implementation [18]. This is
an area for future work. Despite the false positives resulting from
course-grained file taint tracking, the impact on accuracy was negli-
gible for the applications we studied: only 0.26% of network traffic
ended up in files such as database in these applications.

Message-level taint tag propagation is implemented for IPC in
ADEL. This is achieved by instrumenting the parcel in binder as
explained in Section 5.1.

6. VALIDATION
We next examine the accuracy of ADEL and the overhead in-

curred by ADEL. The experiment is done on a Nexus One phone
running Android 2.1 and ADEL.

6.1 Accuracy and limitations
We examine the accuracy of ADEL by evaluating 8 applications,

5 of which are open-source and three of which are closed-source.
Table 1 lists all the application names and corresponding function-
alities. Note that we include three closed-source applications for
validation because we found a limited number of open-source An-
droid applications. By analyzing each application with ADEL, we
produced profiles of all network packets. This profile contained
each packet’s content, its arrival time, and whether the packet ulti-
mately influenced outputs to the user. Packets (transitively) reach-
ing the taint sink were flagged as used while the rest were consid-
ered unused. We read the source code of the open-source applica-
tions, then manually examined all the network packets and used our
understanding of the code to determine whether ADEL correctly
labeled each. Analysis of closed-source applications required less
direct confirmation. We compared the profile generated by ADEL
with the content observed on the display. For example, we man-
ually compared the content of each network packet with the news
stories displayed on the user interface for ABC news application.
We identified the following types of the packet classification errors.
• False negatives are useful network transmissions that are

incorrectly identified as useless. ADEL tracks data flow, not control
flow. This is mainly because control flow tracking either requires
static analysis [19] of application source code, which would under-
mine on-line use, or incurs heavy overhead [17]. One example of
a false positive due to neglecting control flow follows. Many ap-
plications contain some empty HTTP responses that contain only
headers and codes, e.g., “200 OK”. These responses are indeed
useful, e.g., the status code determines which branch to execute.
However, because the influence on application behavior is a result
of control flow, ADEL neglects it. Luckily, the size of such packets
is usually very small, resulting in only minor errors in network en-
ergy leaks. In the applications we study in Section 7, these empty
HTTP responses account for only 0.52% of the total traffic.

• False positives are useless network transmissions that are
falsely identified as used. Another limitation of ADEL is the false
positives induced during tag propagation, including packet-level,
array-level, message-level, and file-level tag propagation. One ex-
ample we found in our experiment results from packet-level asso-
ciation. For applications in which the data unit is large, e.g., a
whole news article for news application, using packet-level asso-
ciation does not influence accuracy. However, in applications like
“Busmap”, each data unit contains the text information for one bus



Table 1: Applications for Validation
Application Functionality

Open
source

Real-
world
apps

Crossword A game application that downloads crossword from multiple online sources
Read for speed An application that downloads book and display it word by word for speed reading

BusMap A map-based application that shows the incoming buses for all bus stops
Photostream A sample application that downloads and displays picture from Flikr

Syn. app Taint test A self-written application that downloads and displays specific webpages

Closed source ABC, Stock quote, and CNN Refer to the Android Market

Table 2: Performance Overhead
Benchmark ADEL (ms) Android (ms) Slow down (×)

Download 1285 1055 1.21
Inter. code 43 4 10.75

IPC 15 4 3.25
File 233 139 1.67

Read 204 503 2.46
Xwords 442 4565 10
P stream 641 6091 9.5
BusMap 2083 8745 4.19

stop and 2 to 3 data units are packed in the same packet. As a re-
sult, information for unused bus stops is falsely identified as used
if any bus stop in the packet was used. These false positives could
potentially be reduced by fine-grained propagation at the cost of
performance overhead.

We should comment at this point that unlike the use of taint
tracking in security applications, misclassification of some network
traffic does not necessary prevent ADEL from fulfilling its design
objective: to help application developers identify and isolate pro-
gramming and design flaws accounting for most energy leaks. ADEL
allowed the identification and isolation of numerous large energy
leaks in real-world energy leaks as described in Section 7.

6.2 Overhead analysis
The performance overhead of ADEL results from additional com-

putation and storage necessary for tracking taint tags. We have two
goals when designing the experiments. First, we want to under-
stand the average slowdown when ADEL is used on real-world ap-
plications. Second, we want to examine all taint propagation paths
to understand their overheads, allowing us to determine what sorts
of slow-downs can be expected for applications with particular be-
haviors. To achieve these goals, we conduct two sets of exper-
iments: one with real-world applications and one with synthetic
applications that stress particular propagation paths.

We use two Nexus one phones, one of which runs the stock An-
droid 2.1 operating system, and one of which is equipped with
ADEL. The portable interpreter was used on both phones (recall
that ADEL is only implemented in the portable interpreter for the
Dalvik VM).

Real-world applications: As shown in Table 2(down), ADEL
incurs 6.14× slow down on average for real-world applications. We
notice that for both application “Cross words” and “Photo stream”,
where tainted objects are intensively propagated between down-
load and display, ADEL incurs roughly 10× overhead. For appli-
cations like “Read for speed” and “Busmap” where tainted objects
are displayed immediately after being downloaded, ADEL incurs
less than 4× slow down. Note that the past works on taint tracking
generally reports significant overhead, e.g., 20× [17] slowdown.
Despite the slowdown, ADEL adds at most 8 seconds to the time
for real-world applications to load. We consider this to be a tolera-
ble but annoying latency because ADEL is designed mainly for use
by application developers during testing.

Synthetic applications: To cover all possible taint propagation
paths, we construct synthetic benchmarks to intensively exercise

Table 3: Applications Studied
Category Applications

News and Weather
CNN, ABC, World News,

News and Weather

Transportation Google Maps, BusMap

Game Crossword, Read for Speed

Social Facebook

Photography Photostream

Sports ESPN Score Center

Finance Stock Quote

Widgets ABC widget, Facebook widget

Other Taint test

specific paths in the taint flow. For example, intensive download-
ing exercises operations in the taint source. Intensive tag propaga-
tions through interpreted code, inter-process communication (IPC),
and files are also exercised. Table 2(up) demonstrates the perfor-
mance overhead of ADEL for these synthetic applications. Inten-
sive tag propagation through interpreted code incurs the most over-
head (10.75× slowdown). This benchmark approaches the worst-
case situation: every instruction involves tag merging. This also ex-
plains the slowdown of “Cross words” and “Photo stream”. There
are two main causes of the overhead: context switches due to IPC
and lock acquisition due to shared memory access. Both of these
result from storing tags in a shared memory region and managing
them with Zygote as explained in Section 5. The slowdown of all
other benchmarks is less than 5×.

The overhead imposed by ADEL does not contradict its use in
helping developers find energy inefficiencies at design time; its in-
tended purpose. One major concern about overhead is that changes
in performance might change the application behavior and hence
prevent us from finding energy leaks. For example, an application
that uses a timer to control downloads might potentially have differ-
ent behavior if latencies were to change. This concern is legitimate.
However, we have not encountered such cases in our study.

7. APPLICATION STUDY
This section describes ADEL-assisted study of network energy

efficiency for 15 Android applications. Seven of these applications
are suspected to contain substantial energy leaks and we were able
to manually verify the presence of significant ADEL-detected leaks
in six of these. For the leaky applications, approximately 57% of
network energy consumption was the result of energy leaks. We
explain four root causes for the detected energy leaks. Our findings
illustrate the value of ADEL and reveal opportunities for improving
application and Android framework API energy efficiency.

7.1 Experimental setup
We study the 15 applications summarized in Table 3. These ap-

plications are chosen based on two criteria: (1) there is intensive
network activity and (2) there is limited database usage in the ap-
plication. We use the second criteria because database use results in
false positives as mentioned in Section 6. The closed-source appli-
cations are popular applications with more than 100,000 downloads
in the Android Market.
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Figure 5: Percent of useful network transmissions for applications
separated by efficiencies, for leaky (left) and efficient (right) appli-
cations.
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We used ADEL to identify (and isolate) network energy leaks in
each application. We are aware of two possible sources of bias in
our experiments.
• Whether an application generates energy leaks is depen-

dent on the application’s active session length. For example, an
application may download a significant amount of content right af-
ter it is launched. These downloads are energy leaks if the user
exits the application immediately after launch. However, they can
be useful if application runs longer. To eliminate this bias, we em-
ulate an average application session by spending more than 250
seconds in each application before exit. 250 seconds is reported
to be the average application session duration [20]. During the ap-
plication session, we manually exercise application functions. One
exception for typical use cases is widget applications. Widgets typ-
ically stay active without exiting. We therefore attempt to approxi-
mate typical use of two widget applications by placing them on the
home screen, reading updates from them every five to ten minutes,
and monitoring their activities for 30 minutes for each application.

• The propensity of an application to leak energy might de-

pend on whether it is in its initialization or normal use phase.

Imagine a news application that downloads latest articles during
the first time it is used during a day and stores them for later use.
During a single session, a user might not read all the articles, mak-
ing the unused articles appear useless. However, the user might
ultimately read these articles in a later session. As a result, analysis
of the first session alone might result in overestimation of energy
leaks. To solve this problem, we run each application three times,
with a five-hour intervals between runs.

To understand the root causes of the suspected energy leaks,
first we examine the network packet usage profile generated by
ADEL for each leaky application. The profile contains each net-
work packet’s taint tag, packet content, packet arrival time, and
whether the packet ultimately influences displayed content. By
doing this, we are able to identify suspected energy leak causes.
We then manually examine application source code, if available, to
confirm our suspicions.

7.2 Findings
Figure 5 shows the percentage of useful network transmissions

for each application, i.e., packets that ultimately influence the con-
tent displayed. We derive this ratio for each application by averag-
ing traces from three runs. A higher percent of useful transmissions

Table 4: Root Causes for Leaks
Causes Applications

Design
flaws

Misinterp. API Photo Stream
Download scheme BusMap, and ABC widget

Repetitive download ABC widget

Aggressive prefetching ESPN, ABC, CNN, and Facebook

suggests a more efficient design. As shown in Figure 5, the applica-
tions with lower bars on the left are suspected to have more serious
energy leaks. Interestingly, there is a clear division between the
suspected leaky applications and efficient applications at 60%.

To determine the amount of energy saved by eliminating these
energy leaks, we must understand the relationship between energy
and total number of packets transmitted. Figure 6 shows the rela-
tionship between network energy and total number of packets for
one phone user. The correlation coefficient between energy and
number of packets is 0.79. We obtained this data by analyzing a
month of network communication quantity and energy consump-
tion logs for 51 Nexus One phone users [16]. Note that these energy
use logs capture the real-world impact of time-dependent wireless
interface power management state changes. Given this correlation,
we claim that reducing the energy leaks detected by ADEL will
save approximately 56.5% of the energy used in network commu-
nications for the detected leaky applications.

By exploring the network packet usage profile and source code,
we identify four major reasons for energy leaks: (1) misinterpreta-
tion of callback API semantics, (2) poorly designed downloading
schemes, (3) repetitive downloads, and (4) aggressive prefetching.
We associate applications with their causes of energy leaks in Ta-
ble 4. Note that a single application may have multiple types of
energy leaks. We categorize the first three causes as design flaws
and the last as aggressive prefetching.

7.3 Application design flaws
This subsection, expands on the three types of unambiguous de-

sign or programming errors that resulted in network energy leaks.
Section 7.4 will deal with energy leaks caused by aggressive pre-
dictive prefetching.

Misinterpretation of callback API semantics: We find that the
application “Photostream” incorrectly uses APIs, leading to sub-
stantial network energy leaks. “Photostream” is a sample applica-
tion written by Google that intends to show beginner developers
how to use specific APIs. The application allows users to retrieve
other user’s pictures from Flickr. As shown in Figure 5, only 38.6%
of network transmissions ultimately influence the display.

Investigating the content and timing of unused network pack-
ets reveals that the “PhotoStream” application downloads many
unused packets even when the application is put into the back-
ground. By exploring the source code, we confirm that the back-
ground downloading thread is stopped in onDestroy(), a callback
method that is not guaranteed to be called after the application is
put into background. As a result, the application continues down-
loading objects that cannot ever be displayed, resulting in network
energy leaks.

This bug can influence many applications due to misunderstand-
ing of the documentation. Android SDK clearly suggests that de-
velopers clean up threads in the onDestroy() callback method be-
fore the application is about to be killed. This suggestion is rea-
sonable for handling threads in general because it reduces the cost
of initializing a new thread when the application is resumed. How-
ever, in this particular case, it produces energy leaks because the
thread continues downloading (useless) data. To make things worse,
the source code of “PhotoStream” was provided as an example ap-
plication for use by beginner Android developers, potentially prop-
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Figure 7: Histogram of percent of useful network transmission from user study for suspected leaky applications.

agating the design error into other applications. This bug could be
fixed by stopping the thread in onPause(), which is guaranteed to
be called after the application is placed in the background.

Poorly designed downloading scheme: In this case, the net-
work device is frequently used to update data objects without con-
sidering either device state (e.g., whether the screen is on or off) or
user input. We identify two applications with this problem: “ABC
widget” and “BusMap”. The first wastes 78.0% of network trans-
missions and the second wastes 46.9% of network transmissions.

“ABC widget” is a news widget application that can be placed on
home screen. Surprisingly, by examining the timing of unused net-
work packets, we find that the widget keeps updating news article
every 5 minutes, regardless of whether the widget is being shown or
even whether the display is on or off. This poorly designed down-
loading scheme is detrimental to smartphone battery life as it not
only wastes communication energy and CPU when the phone is
active, but also causes the phone to wake up every 5 minutes even
when it is idle.

More interestingly, further exploration on the widget related APIs
in Android leads us to believe that the Android framework fails
to provide a good mechanism for widgets to stop updating when
not visible. There are three scenarios when a widget is not visi-
ble: the display is off, the widget is placed on another home screen
that is not displayed, or another application is running in the fore-
ground. Android’s API provides an indirect way to help the widget
to identify the first scenario [21], but it is impossible for the lat-
ter two. Apparently, “ABC widget” even fails to identify the first
one. This finding suggests improvements in the Android frame-
work API, e.g., provide widget applications notifications when they
are not visible or stop sending the update notifications when wid-
gets are not visible.

“BusMap” contains another example of a poorly designed down-
loading scheme. It is a map-based application that informs users to
the next three school buses to arrive at bus stops. A user selects
a specific stop to view its bus schedule. The schedule for only a
single stop can be examined at any particular time. Examination of
the timing and content of unused network packets reveals a cause
for energy leaks: regardless of which stop the user selects, the ap-
plication downloads schedules for all stops, even those that are not
visible on the current map. To eliminate the inefficiency, developers
should design downloading schemes that take possible (and ideally
common) user input into consideration.

Repetitive downloads “ABC widget” application is found to
have repetitive downloads, e.g., packets containing identical con-
tent are downloaded but never used. By examining the content of
its unused network packets, we discover that every time the applica-
tion updates, it downloads all recent news articles, even when they
have not been updated. Clearly, this observation suggests that the
application naïvely fetches the latest news articles from the Inter-
net without caching any of the downloads. In order to fix this bug,
application developers could add an expiration time for each article
or have the application server notify the client of new updates.

7.4 Aggressive prefetching
Prefetching has been used extensively in both desktop and mo-

bile environments to improve user satisfaction by eliminating down-
load delays for data that are expected to be required soon. It gener-
ally uses prediction, often of future user actions. Such predictions
cannot be perfectly accurate. Therefore, even a well-developed pre-
dictive prefetching application will download some objects that are
never used. In order to enable a rational understanding of the trade-
off between response latency and unused transmission, developers
must first understand the percentage of unused transmissions by
the target application. ADEL helps to provide this number and
hence also assists developers to determine when it would improve
application energy efficiency by adjusting prefetch aggressiveness
and/or improving prefetching predictor accuracy. As shown in Ta-
ble 4, four out of seven suspected leaky applications we studied
have inappropriate prefetching settings.

Whether a significant portion of prefetching wastes energy can-
not be determined by a single user’s trace. This is mainly because
an unnecessary packet for one user may be useful for another user
due to varying use patterns. Hence, to capture the prefetching ag-
gressiveness of an application, it is necessary for us to study the
applications with different usage patterns.

We conducted a small-scale user study with 8 graduate students
who are regular smartphone users running applications on top of
ADEL. To avoid bias, none of the users were told the intention of
the experiment until after it was completed. Each participant was
asked to use the four leaky applications as they would in daily life;
each application was run three times. There was no time constraint
for any particular application. After gathering user traces for one
application, the percent of useful network transmissions is derived
from each trace. Note that this percentage is inversely related to
prefetching aggressiveness. Figure 7 summarizes the distribution
of the percent of useful network transmission for each application.

We can draw two conclusions from Figure 7.
• The percent of useful network transmissions for one appli-

cation varies significantly across users due to variation in user be-
havior. As shown in Figure 7, the percent of useful network trans-

mission spans a range of more than 40%. Note that each sample
represents the average useful network transmission of three runs.
The average variation of a particular user across runs is 4.2%. This
substantial variation across users suggests that the optimal prefetch-
ing aggressiveness depends on the user; it suggests that a static
prefetching scheme is unlikely to be optimal for all users.

• “Facebook” is more efficient than the other three suspected
leaky applications. For example, more than 80% of the network
transmissions are useful for 5 of the 8 users. What’s more, the mean
of the distribution is 78.4%, indicating that 78.4% the downloaded
content turns out to be useful for an average user. As a result of
this, we find that “Facebook” is not leaky, despite of our previous
suspicion.

Based on our observations, the applications the energy efficiency
of “ABC”, “CNN”, and “ESPN” can be improved by reducing



prefetching aggressiveness, at some possible cost to user-observed
performance.

ADEL’s ability to determine unused prefetched content enables
three additional use scenarios in addition to detecting energy bugs.
First, developers can use ADEL to learn the effectiveness of the
application’s prefetching scheme and adjust it during application
design. Second, users can occasionally use ADEL to determine
whether an application is prefetching with appropriate aggressive-
ness and adjust this parameter within the application or operating
system. Third, with performance optimizations, ADEL could po-
tentially be used within the operating system to provide applica-
tions with a real-time feedback on prefetching energy waste for one
particular user. Applications could then adjust their prefetching ag-
gressiveness to customize the user’s current behavior.

7.5 Discussion
The above findings indicate that ADEL can help application de-

velopers to find the root causes of energy leaks in their applica-
tions. One may argue that a simpler approach can also detect such
bugs. For example, repetitive downloads can be detected by sim-
ply checking the timing of the download pattern. However, with-
out ADEL, the application developers do not even know the spe-
cific problems that should be tested for. For example, the develop-
ers may not know that the timing of download pattern is the most
promising place to look for problems. ADEL makes it really easy
for application developers to find where energy leaks occur.

Eliminating energy leaks detected by ADEL can improve energy
efficiency. However, some leaks can be difficult to eliminate. For
example, it is quite easy to fix the first three types of leaks in Sec-
tion 7.2: the incorrectly used API can be fixed by changing API
use; the widget that downloads data ignoring device state can be
fixed by checking device state before download; and the repetitive
downloads can be eliminated by caching. In contrast, it may not
always be possible to develop a prefetching scheme that is both en-
ergy efficient and maintains adequate user performance because the
very concept of prefetching relies on prediction, which is by nature
imperfect. Therefore, it should be up to the developers to determine
whether the potential energy saving suggested by ADEL justify the
extra implementation effort.

8. CONCLUSION
In this work, we provided a definition of energy leaks: common

but hard to detect energy waste resulting from useless activities in
smartphone applications. We have described the design and im-
plementation of ADEL, an Automatic Detector for Energy Leaks.
ADEL identifies unnecessary network communication and its root
causes via dynamic taint tracking. ADEL incurs 21.8% perfor-
mance overhead on average.

We studied 15 real-world applications using ADEL and found
that 6 of these have significant energy leaks. Eliminating these en-
ergy leaks results in an average 56.5% reduction in energy con-
sumption due to network communication. Our study revealed four
common causes for energy leaks: misinterpretation of callback API
semantics, poorly designed downloading scheme, repetitive down-
loads, and aggressive prefetching. Both ADEL and our study of
network energy leaks in Android applications have the potential to
help application developers improve energy efficiency.
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