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ABSTRACT

Smartphone usage has experienced significant growth in the recent years. Despite of its

popularity, there is a tension between the increasing demand for smartphone performance,

e.g., lower response time, and the limited resource provided by smartphones, in particular

energy. Unfortunately, the situation has been made even worse due to two major chal-

lenges. On the energy side, software developers do not necessarily understand the energy

implication of their design decisions. On the performance side, the traditional approach to

optimize performance is not necessarily applicable to mobile device due to the difference

in workloads and performance bottlenecks. Combined, these difficulties made balancing

between energy and performance for mobile systems and applications even more challeng-

ing. As a result, many mobile application, and even those developed by mature companies,

can make poor decisions, either on performance or on energy.

My thesis is dedicated to address these challenges by providing a practical, automatic,

efficient, and effective framework to help mobile system and application developers to

monitor, understand, and optimize the performance and energy of their target designs.

My approach consists of three major steps. (1) We first enable developers’ understanding

of energy implication by providing power models and its construction framework. The

provided tool, PowerTutor has demonstrated great value by helping a number of devel-

opers to monitor the energy usage of the system and applications. We also enable devel-

oper’s understanding of performance in the mobile paradigm by providing Panappticon, a

lightweight, system-wide, fine-grained event tracing system that automatically identifies

xi



user perceived latency. (2) We then characterize and analyze the real-world smartphone

usage scenario by studying traces gathered from PowerTutor and Panappticon. Our study

suggests optimization and design guidance for smartphone designers. (3) Motivated by

our findings, we proposed technique to optimize the application’s energy consumption

while maintaining user perceived performance. The diagnosis framework ADEL (Auto-

matic Detector of Energy Leaks) we develop detects and isolates wasted energy resulting

from unnecessary network communication. Our study reveals common inefficient design

decision in popular applications which were unknown before.

xii



CHAPTER I

Introduction

Smartphone usage has experienced significant growth in the recent years. By the year

2012, there are over 100 million smartphone users in the U.S. only [6]. Despite of the in-

creasing popularity of smartphone, there remains a tension between the increasing demand

on smartphone performance, e.g., lower response time, and the limited resource provided

by smartphones, in particular energy. On one hand, users expect smartphones with good

performance and new additional hardware–software features that provide smooth user ex-

perience. This results in a dramatic increase in the demand for energy. On the other hand,

the available energy provided by smartphone is constrained by battery size and weight and

improvements in battery technology have historically been slow.

To ease this tension, we are facing the following challenges.

• Software engineers lack the necessary understanding of the energy implication of

their design decisions. Designing an energy efficient system framework or application

requires that software developers understand the energy implication of their design deci-

sions. Unfortunately, many software developers, even the experienced ones, are trained

to develop on general purpose machine and hence have limited experience with energy-

constrained portable embedded systems such as smartphones. This lack of knowledge and

experience requires us to help them to establish the necessary understanding of energy

1
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first.

• Designing for performance on mobile devices is different from designing for gen-

eral purpose PCs and servers. This is mainly because unlike traditional workloads, mobile

workloads are interaction-centric. As a result, traditional performance metrics do not nec-

essarily apply to mobile device. For example, capturing the background task’s execution

time and reducing it accordingly does not necessarily improve user’s experience. More-

over, the difference in workloads results in different performance bottlenecks and hence

requires distinctive optimization approaches. Accordingly, we also need to help mobile

designers to identify the applicable performance metric and understand the performance

bottlenecks.

• Balancing the trade-off between energy and performance is essential for mobile

applications and systems to maintain user satisfaction. Most if not all mobile applications

are interactive applications. User experience with the application and the system can be

easily hurt if designers only focus on one aspect in their designs. For example, the battery

can drain quickly if the application developers uses an aggressive prefetching scheme to

prefetch every link on a web page to shorten the response time. Or users can be annoyed

by long respond time if the system developers sets the frequency of the processor speed

at the lowest level to save energy even when user’s interacting. Therefore, any proposed

energy saving technique needs to consider the performance implication and vice versa.

• Little is known of the representative real-world usage scenario of smartphone.

Despite of the increasing popularity of smartphone, little is known of the representative

real-world usage scenario of smartphone. As a result, optimization effort has been spent

on components without really understanding the necessity for such optimization. For ex-

ample, a smartphone equipped with quad-core processor has been newly released without

questioning the necessity for such parallelization. This absence of understanding motivates
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Figure 1.1: Flow chart of the thesis.

us to explore the real-world usage scenario to reveal the real opportunities for optimization.

My thesis is dedicated to address these challenges by providing a practical, automatic,

efficient, and effective framework to help mobile system and application developers to

monitor and optimize the performance and energy of their target designs. Figure 1.1

describes the three major steps I take. I’ll elaborate each piece in the following subsections.

1.1 Enable the Understanding of Energy Implication and Performance
on Mobile Device

We aim at helping developers to design efficient mobile system and applications, both

in terms of performance and energy efficiency. To achieve this, the very first step is to en-

able them to understand both the energy usage and performance of their target designs. For

energy, we enable the developers to understand the energy implications of their design de-

cisions by providing a power model and model construction technique. For performance,

we help developers to monitor the performance of their designs and detects performance

bottlenecks on mobile systems by providing a event-based monitoring framework captur-

ing the user perceived latency.
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1.1.1 Accurate Online Power Estimation and Automatic Battery Behavior Based
Power Model Generation for Smartphone

We first describe PowerBooter, an automated power model construction technique that

uses built-in battery voltage sensors and knowledge of battery discharge behavior to mon-

itor power consumption while explicitly controlling the power management and activity

states of individual components. It requires no external measurement equipment. Power-

Booter is intended to make it quick and easy for application developers and end users

to generate power models for new smartphone variants, which each have different power

consumption properties and therefore require different power models.

We also describe PowerTutor, a component power management and activity state in-

trospection based tool that uses the model generated by PowerBooter for online power

estimation. PowerTutor is intended to ease the design and selection of power efficient

software for embedded systems. Combined, PowerBooter and PowerTutor have the goal

of opening power modeling and analysis for more smartphone variants and their users.

1.1.2 Panappticon: Event-based Monitoring to Optimize Mobile Application and
Platforms

As mentioned before, the interaction-centric nature of mobile systems leads to signifi-

cant difference between performance monitoring and optimization between mobile device

and general purpose PC and servers. This makes the traditional performance metric, e.g.,

task execution time, and optimization approach inapplicable to mobile device.

We fill this gap with Panappticon, a lightweight, system-wide, fine-grained event trac-

ing system for Android that automatically identifies critical execution paths in user trans-

actions. Panappticon monitors the application, system, and kernel software layers and

can identify performance problems stemming from poor application code, underpowered

hardware, and negative interactions between otherwise unrelated applications. We car-
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ried out a study with 14-user, one-month study. of user-software-hardware smartphone

systems. Panappticon allowed us to identify a number of real-world problems that sys-

tem designers, application developers, and device manufactures can use to improve the

user-perceived performance of their products.

1.2 Characterization of the Energy Usage and Performance of Real-
world Workload

To develop effective optimization strategy for both energy efficiency and performance,

it is essential for us to understand the real-world usage scenario to identify bottlenecks.

To this end, we deployed both PowerTutor and Panappticon on real users to collect traces,

focusing on finding real opportunities to develop optimization strategies.

PowerTutor was released in Android Market. It gathered traces from thousands of real

users over a year. One key observation we observed from these traces is that network

interfaces (including 3G and WiFi interfaces) is among the top energy hungry hardware

components.

Panappticon was deployed on 14 users we recruited from University of Michigan for

a month. The deployment result suggests performance bug in applications, system policy

inefficiency, e.g., Dynamic Voltage and Frequency Scaling (DVFS), and reveals the im-

pact of architectural decision on user perceived latency, e.g., adding additional core to the

processor.

1.3 Optimization for Energy Consumption While Maintaining Per-
formance

The trade-off between energy consumption and performance presents a huge challenge

for application developers as mentioned before. Any optimization strategy that focuses on

one aspect without considering the other can easily hurt user experience.
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To overcome this challenge, we define the notion of Energy leaks. Energy leaks occur

when applications use energy to perform useless tasks, a surprisingly common occurrence.

They are particularly important for mobile applications running on smartphones due to

their energy constraints. Energy leaks are difficult to detect and isolate because their nega-

tive consequences are often far removed from their causes. Few tools are available for ad-

dressing this problem. We have therefore developed ADEL (Automatic Detector of Energy

Leaks). ADEL consists of taint-tracking enhancements to the Android platform. It detects

and isolates energy leaks resulting from unnecessary network communication by tracing

the direct and indirect use of received data to determine whether it ever affects the user. We

profiled 15 applications using ADEL. In 6 of them, energy leaks detected by ADEL and

verified by us account for approximately 40% of the energy consumed in communication.

We identified four common causes of energy leaks in these applications: misinterpretation

of callback API semantics, poorly designed downloading schemes, repetitive downloads,

and overly aggressive prefetching.

1.4 Thesis Organization

This dissertation is structured as follows.

• Chapter II describes our first two steps from the energy’s perspective. It describes

the methodology to automatically and manually derive the power model of various of

different phone types. It also presents the variation of power models among different

phone types. Along with the power model, we also present PowerTutor, the tool that

monitors the power consumption of applications and the system. The characterization of

real-world PowerTutor traces follows.

• Chapter III presents the first two steps from the performance perspective. It de-

scribes our approach to capture and analyze perceived user transaction for mobile systems
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based on correlation between fine-grained kernel and user-level events. The traces col-

lected from Panappticon exposes performance inefficiencies in applications and operating

system policy. It also reveals the impact of architectural decision on perceived user trans-

action.

• Chapter IV explains our third step. In Chapter IV, we propose a novel diagnosis

framework that isolates and detects energy leaks due to network transmission of various

applications. This framework is intended to improve the application’s energy efficiency

while maintaining user perceived performance.

• Chapter V summarizes related works.

• Chapter VI concludes the thesis.



CHAPTER II

Automatic Online Power Estimation and Automatic
Battery Behavior Based Power Model Generation for

Smartphones

2.1 Introduction

There is tension between the interest in potentially power-hungry smartphone appli-

cation features and the requirement for low power consumption necessary for long bat-

tery lifespans. Designers of smartphone hardware–software platforms have incorporated

power-saving features, allowing components to dynamically adjust their power consump-

tions based on required functionality and performance. However, using these features

wisely (or at least avoiding undermining their benefits) requires that software develop-

ers understand the implications of their design decisions. Unfortunately, many software

developers have limited experience with energy-constrained portable embedded systems

such as smartphones. As a consequence, many smartphone applications are unnecessarily

power-hungry.

End users have difficulty determining which applications are energy-efficient, and

which squander energy; as a result, application users may blame short battery lifespans

on operating systems or hardware platforms instead of unfortunate and unintentional soft-

ware design decisions. Fortunately, application designers have an incentive to develop

8
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energy-efficient smartphone software. Their main barrier is the difficulty of determining

the impact of software design decisions on system energy consumption, but that barrier

can be overcome.

Researchers have proposed power models for portable embedded systems including

Palm [16] and HTC Dream [50]. These power models were derived manually by using

a power meter attached to one specific embedded system instance. As a result of the

model construction process, the generated power model is at best accurate for one type of

embedded system and at worst accurate only for the specific embedded system instance

for which it was built. It would require great effort and time to manually generate power

models for the wide range of phones now available.

This chapter describes online power model generation techniques. The models pro-

duced by these techniques provide accurate, real-time power consumption estimates for

power-intensive Android platform smartphone components including CPU, LCD, OLED,

GPS, and audio, as well as Wi-Fi and cellular communication components. The proposed

system-level power model is based on the influence of the power management and activity

states of hardware components on system power consumption. Hardware components are

associated with system variables, e.g., LCD brightness, that are subject to introspection

and allow estimation of component power consumptions. In additional to system-level

power modeling, we describe a technique to model the power consumption of concurrent

running applications on multitasking systems.

In this chapter, we show that phones of different types have significant differences in

power consumption properties and provide evidence that power consumption differences

between individual phones of the same type are negligible for HTC Dream, HTC Magic

phones and Nexus One phones. Motivated by this observation and the difficulty of gener-

ating power models manually, we propose a battery-based automatic model construction
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technique. This technique uses the built-in battery voltage sensors common to modern

smartphones. Instead of using a power meter, we use this voltage sensor, and a somewhat

complex but automated characterization procedure, to generate a power model.

Finally, we describe a widely used on-line power estimation tool, PowerTutor, that de-

termines system-level and application-level power consumption by using the model gener-

ation techniques described in this chapter. PowerTutor has been evaluated on the Android

HTC Dream (ADP1), HTC Magic (ADP2) phones and Nexus One phones (N1). Using

this tool, we performe the largest-scale in-field data gathering experiment to date to un-

derstand smartphone energy consumption. Our tool has been downloaded for more than

66,000 times and it is now in use on more than 800 different smartphones every day. We

have been able to make a number of observations, e.g., determining the most energy-

hungry hardware components, by studying the resulting anonymized power consumption

and activity traces. These observation can be used to understand the opportunities in en-

ergy optimization for architects and application developers.

The work described in this chapter makes four main research contributions.

1. We provide manually generated power models for HTC Dream, HTC Magic

phones and Nexus One phone. These comprehensive system-level models consider CPU,

LCD, OLED, GPS, Wi-Fi, cellular, and audio components (see Section 2.2). This is the

first work describing a GPS power model and interestingly, our OLED model differs from

the prior model [19]. For components with significant power consumption, we find that

power consumption is independent of the states of other components. See Section 2.2 for

details.

2. We measure variation in power consumption properties among phones. In partic-

ular, for the phones we studied, we quantify the (small) variation among multiple instances

of the same type of phone, and the (large) variation among different types of phones. See
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Section 2.3 for details.

3. We describe a novel automated power model construction technique. This tech-

nique uses built-in battery voltage sensors and knowledge of battery discharge behavior

to monitor power consumption while explicitly controlling the power management and

activity states of individual components. It requires no external measurement equipment.

See Section 2.4 for details.

4. We study and analyze real-world user traces and suggest optimization opportuni-

ties for architects and developers based on our observations. See Section 2.7 for details.

In addition, our work makes a practical contribution: we describe an easy-to-use on-

line power estimation technique that uses the power models described above to determine

component-level and application-level power consumption during application execution.

A software implementation of this estimator has been released on the Android market.

This software tool, which we refer to as PowerTutor, has been used by more than 66,000

people. See Section 2.6 for details.

2.2 Power Model

In this section, we will first describe the specific smartphone platform we modeled and

the measurement setup. We then explain the system-level power modeling methodology,

followed by the detailed description of each hardware component, including CPU, LCD,

Wi-Fi, cellular interface, GPS, and audio. We explain the modeling of OLED in more

details due to its importance and difference with the previous published OLED model.

Finally, we explain the application-level power model.
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Table 2.1: Hardware Components for HTC Dream
Hardware component Detailed description

Processor
MSM7201A chipset, including ARM11 application processor,

ARM9 modem, and high-performance DSP
LCD Display TFT-LCD flat glass touch-sensitive HVGA screen

Wi-Fi interface Texas Instruments WL 1251B chipset
GPS A-GPS and standalone GPS

Cellular
Qualcomm RTR6285 chipset, supporting GSM, GPRS/EDGE,

Dual band UMTS Bands I and IV, and HSDPA/HSUPA
Bluetooth Bluetooth 2.0+EDR via Texas Instruments BRF6300

Audio Built-in microphone and speaker
Camera 3.2-megapixel camera
Battery Rechargeable lithium-ion battery with capacity: 1,150 mAh
Storage MicroSD card slot

Figure 2.1: Experimental setup for power measurement.

2.2.1 Smartphone Hardware Components and Experimental Setup

This section describes power modeling of an Android Dev Phone 1 (ADP1), a version

of the HTC Dream mobile phone that permits superuser access. Its hardware components

are shown in Table 2.1. We used the Android 1.6 software development kit, which supports

both Java and C programming. As Android Dev Phone 2 (ADP2) and Nexus One (N1)

phone share most similar hardware components with ADP1, we will describe their system

power models in Section 2.3. We describe the OLED display model on Nexus One phone

with more details in Section 2.2.4.

We use a Monsoon FTA22D meter [38] for power measurement. The measurement

instruments are illustrated in Figure 2.1. The Monsoon meter supplies a stable voltage to
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the phone and samples the power consumption at a rate of 5 KHz. During characterization,

the ADP1 runs two programs simultaneously. One is a power state exerciser that controls

characteristics influencing phone power consumption such as CPU utilization and LCD

brightness. This control is not always perfect or precise; we therefore also run a second

program to log readings at sufficiently high frequency to capture most changes of system

state variables. By using these two programs, we exercise all relevant power states in a

relatively short time, and determine the precise system state at any particular time.

2.2.2 Modeling Methodology

There are three steps to derive the power model. We will illustrate them individually.

Selecting hardware components and system variables: To determine which com-

ponents need to be considered, we carry out the following experiment for each.

1. Hold the power and activity states of all other components constant.

2. Vary the activity state to extreme values for the components of interest, e.g., set

CPU utilization to its lowest and highest values or configure the GPS state to extreme

values by controlling activity and visibility of GPS satellites.

For each component, determining the setting that results in extreme power consumption

requires some experimentation and knowledge of the component implementation.

Based on these initial experiments, we exclude the components with insignificant im-

pact on the system power consumption, e.g., the SD card. The following components are

modeled: CPU and LCD display as well as GPS, Wi-Fi, cellular, and audio interfaces. By

measuring the power consumption of the phone when it is at different cross products of

extreme power states (e.g., for LCD and CPU, the cross products can be [Full brightness,

Low CPU] and [Low brightness, High CPU]), we found that the maximum error resulting

from assuming that individual components are independent is 6.27%. This suggests that
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a sum of independent component-specific power estimates is sufficient to estimate system

power consumption. Note that some hardware components are excluded because their

state variables are not visible to the OS, e.g., memory. However, their power consump-

tions have been accounted for by assigning them to visible (and correlated) components,

e.g. memory’s power is assigned to CPU.

Training suites to derive power model: It is necessary to determine the relationship

between each state variable and power consumption for each relevant hardware compo-

nent. The main idea is to use a set of training programs to change one activity state variable

at a time, while keeping all others constant. In each training program, we periodically vary

each state variable over its full range. Fixing power states of all other components when

exercising one component can reduce measurement noise resulting from state transitions

by other components. For example, to determine the relationship between CPU utilization

and total power consumption, we fix the CPU frequency and disable the LCD display, as

well as the cellular, Wi-Fi, and GPS interfaces. We then use a program to gradually vary

the CPU utilization from 0% to 100%. Note that some component power state variables

cannot be independently controlled. For example, Wi-Fi and CPU power states are in-

terdependent. To take the influence of interdependent components into account, we also

monitor all component power states while exercising the target component. During re-

gression, the power states of all components are considered. In the following subsections,

we discuss the implementation of the training programs and the relationship between the

power consumption and the corresponding state variables.

Regression-based approach: After collecting power traces for hardware components

under control of our training software, we use multi-variable regression to minimize the
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sum of squared errors for the power coefficient.
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= β1 ·
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. . . + βm ·


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· · ·
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
+ c. (2.1)

In this equation, Ui j represents system variable i in the jth state. P j is the power consump-

tion when all system variables are in the jth state. The inputs for regression are the system

variables and the outputs are power consumptions and power coefficients βi. Constant c is

the minimum system power consumption. Note that Equation 2.1 only represents a linear

relationship between system variables and power consumption. However, this is insuffi-

cient for some system variables, e.g., processor frequency. In Table 2.2, we use a zero-one

indicator associated with a power coefficient to represent the non-linear relationship be-

tween frequency and power consumption.

2.2.3 Component-level Power Model

CPU: CPU power consumption is strongly influenced by utilization and frequency.

Varying dynamic, leakage, and peripheral circuit power consumptions invalidate simple

cubic frequency–power relationship approximations. Here, we measure the dependence

of CPU power consumption on utilization and frequency–voltage settings.

The HTC Dream platform supports two CPU frequencies: 385 MHz and 246 MHz.

The corresponding power coefficients are shown in Table 2.2. We consider only the appli-

cation processor (ARM11); system variables are hidden for the other processor (ARM9),

which is dedicated to cellular data and voice services [39]. We model the cellular proces-

sor as a part of the cellular interface. The variable βCPU shown in Table 2.2 indicates the

power difference between active and idle states of the application processor [1].
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Table 2.2: HTC Dream Power Model

Model
(βuh × freqh + βul × freql) × util + βCPU × CPU_on + βbr × brightness

+ βGon ×GPS _on + βGsl ×GPS _sl + βWi-Fi_l ×Wi-Fil + βWi-Fi_h ×Wi-Fih

+ β3G_idle × 3Gidle + β3G_FACH × 3GFACH + β3G_DCH × 3GDCH

Category System variable Range Power coefficient

CPU
util 1–100

βuh: 4.34
βul: 3.42

freql,freqh 0,1 n.a.
CPU_on 0,1 βCPU : 121.46

Wi-Fi

npackets, Rdata 0–∞ n.a.
Rchannel 1–54 βcr

Wi-Fil 0,1 βWi-Fi_l: 20
Wi-Fih 0,1 βWi-Fi_h: Equation 2.2

Audio Audio_on 0,1 βaudio: 384.62
LCD brightness 0–255 βbr: 2.40

GPS
GPS_on 0,1 βGon: 429.55
GPS_sl 0,1 βGsl: 173.55

Cellular

data_rate 0–∞ n.a.
downlink_queue 0–∞ n.a.

uplink_queue 0–∞ n.a.
3Gidle 0,1 β3G_idle: 10

3GFACH 0,1 β3G_FACH: 401
3GDCH 0,1 β3G_DCH: 570

The CPU training program is composed of a CPU use controller, which controls the

duty cycle of a computation-intensive task, and a frequency controller, which writes the

system frequency file in the /sys filesystem.

LCD: The LCD power model is derived using a training program that turns the LCD on

and off and changes its brightness. To simplify modeling, we used 10 uniformly distributed

brightness levels.

GPS: We consider the influence of the following GPS-related variables on power con-

sumption: mode (e.g., active, sleep, or off), the number of satellites detected, and the

signal strength of each satellite. All these variables are logged using the Android Soft-

ware Development Kit API. To control the GPS state, we use the requestLocationUpdate

method [1], to make the GPS component switch between sleep and active states. It was
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Figure 2.2: Power profile for the current GPS policy.

necessary to change the physical environment of the smartphone to control the number

of satellites available and their signal strengths. To this end, we use a conductive hemi-

sphere (i.e., a Faraday Wok) that attenuates radio frequency signals, allowing us to exercise

coarse-grained control over the GPS environment. We considered three states: active with

many satellites available, active with few satellites available, and sleep. Our measurements

indicate that the power consumption depends strongly on whether the GPS component

is active or in sleep mode (see Figure 2.2), but has little dependence on the number of

satellites available or the signal strength. Considering only the GPS operating mode is

sufficiently accurate.

Wi-Fi: To derive the Wi-Fi model we consider two network parameters: data rate and

channel rate. The Wi-Fi power model is derived by exchanging fixed size (1 KB) TCP

packets between the smartphone and a local server. We control the data rate by varying

the delay between transmissions from 0 s to 2 s in steps of 0.1 s. These experiments are

repeated at uplink channel rates of 11 Mbps, 36 Mbps, 48 Mbps, and 54 Mbps. Repeating

the experiment with UDP packets produced similar results.

The Wi-Fi power model depends on four system variables: number of packets trans-

mitted, received per second (npackets), uplink channel rate (Rchannel), and uplink data rate

(Rdata). Figure 2.3 shows the Wi-Fi power model. The Wi-Fi interface has four power

states: low-power, high-power, ltransmit, and htransmit. Ltransmit and htransmit are

briefly entered when transmitting data. After sending the data, the card returns to its pre-
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vious power state. When transmitting at high data rates, the card is only briefly in the

transmit state, i.e., approximately 10–15 ms per second. The time for low-power trans-

mit state is even shorter. The Wi-Fi component power consumption in either transmitting

state is approximately 1,000 mW. The low-power state is entered when the Wi-Fi inter-

face is neither sending nor receiving data at a high rate. Power consumption in this state

is 20 mW. Transition from low-power state to high-power state happens when more than

15 packets are transmitted or received per second. Interestingly, packet rate, not bit rate,

determines the power state. The value of npackets must drop to 8 per second to return to

the low-power state, i.e., the system has hysteresis. In the high-power state, the power

consumption is 710 mW.

To verify our claim that at a particular channel rate and packet rate, Wi-Fi interface

power consumption is independent of bit rate, we repeat the experiments with packet size

varying from 0 B to 1 KB, in 100 byte intervals. We observe that the packet size does not

influence power consumption given fixed channel and packet rates. However, when the

channel rate is low, more time is spent in the very high power consumption transmitting

state, given the same amount of data transmitted. The Wi-Fi interface power consumption

in high-power state is modeled as follows:

βWi-Fi_h = 710 mW + βcr (Rchannel) × Rdata and (2.2)

βcr (Rchannel) = 48 − 0.768 × Rchannel. (2.3)

Cellular: The cellular interface model is derived by sending UDP packets between

a smartphone and a local server via the T-Mobile UMTS 3G network. Packet sizes vary

from 10 B to 1 KB. For each packet size, we vary the delay between transmissions from 0 s

to 12 s in 0.1 s intervals. Results are similar for TCP packets. The following model does

not consider signal strength.
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Figure 2.4: 3G interface power states.

The measured data are consistent with the finite state machine based power model

shown in Figure 2.4. The model depends on transmit and receive rate (data_rate) and two

queue sizes. It contains three important states for the communication channel between

base station and cellular interface [30].

CELL_DCH: In this state, the cellular interface has a dedicated channel for communi-

cation with the base station. It can therefore use high-speed downlink/uplink packet access

(HSDPA/HSUPA) data rates, resulting in a power consumption of 570 mW for the cellu-

lar interface. When there is no activity for a fixed period of time (inactivity timer 2), the

cellular interface enters the CELL_FACH state.

CELL_FACH: In this state the cellular interface shares a communication channel to

the base station. It can access the random/forward access (CELL_RACH/CELL_FACH)

common channels. Its data rate is only a few hundred bytes per second. CELL_RACH

is an uplink channel and CELL_FACH is a downlink channel. Cellular interface power

consumption in this state is 401 mW. If there is a lot of data to be transmitted, the cellular

interface enters the CELL_DCH state. Transition from CELL_FACH to CELL_DCH is

triggered by changes in the downlink/uplink queue sizes maintained for these two states in

the radio network controller. Our measurements indicate state transition thresholds of 151

bytes for the uplink_queue and 119 bytes for the downlink_queue. Once either queue size
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Figure 2.5: (a) TCP handshake RTT. (b) HTTP GET RTT.

exceeds its threshold, CELL_DCH is entered. If idle for a sufficient duration (inactivity

timer 1), the IDLE state is entered.

IDLE: In this state the cellular interface only receives paging messages and does not

transmit data. The power consumption is 10 mW.

In order to infer the inactivity durations resulting in state transitions for T-Mobile’s

UMTS 3G network, we repeatedly download an 80 KB file using HTTP 30 times with a

period that increases from 1–29 seconds in one-second intervals, recording the timestamp

for each packet. The experiment is repeated 3 times. Before each transmission, the con-

nection is left idle for 30 seconds to allow the cellular interface to enter the idle state. We

calculate two Round Trip Times (RTTs) at the beginning of each download. The first RTT

is the time between sending out a SYN packet and receiving a SYN-ACK packet during

TCP connection set up. The second RTT is the time between sending the HTTP Get re-

quest and receiving the first data packet. Figure II.5(a) and Figure II.5(b) show the first

and second RTTs calculated for each download. Based on these figures, we can infer the

times at which state changes occur due to inactivity.

In Figure II.5(a), the RTTs of download 11, as well as those of subsequent downloads,

are equal to the RTT of the first download, which starts from the idle state. Hence the

sum of the two inactivity timers is 10 seconds. Figure II.5(a) indicates that the RTTs of

downloads 7 and 8 are larger than those of downloads 2–6. This is due to the delay of
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the state demotion from CELL_DCH to CELL_FACH. Figure II.5(b) shows that down-

loads 2–6 have smaller RTTs than the others; the other downloads experienced delay in

state promotion from CELL_FACH to CELL_DCH. We conclude that inactivity timer 1 is

initialized to 6 seconds and inactivity timer 2 is initialized to 4 seconds.

Audio: We modeled the audio interface by measuring the power consumption when

it is not used, and when an audio file is played at different volumes. The measured data

(see Table 2.2) indicate that audio interface use influences power consumption but speaker

volume does not. We hypothesize that the increased power consumption during audio

output is due to activating a digital signal processor and/or speaker amplifier.

2.2.4 OLED Power Model

OLEDs (organic light-emitting diodes) are new display technology that have been used

in smartphones produced by HTC and Samsung. Each pixel of OLED display is composed

of red, green, and blue sub-pixels, each of which is an independent LED. OLED displays

therefore contain no backlights. Consequently, unlike the LCD power model, the power

consumption of OLED is not determined by backlight brightness. Instead, it is the sum

of the power consumption of every pixel power consumption. As a result, OLED’s power

consumption depends more strongly on display content than LCD power consumption.

Dong et al. [19] previously proposed an OLED pixel power model. They describe

the nonlinear relationship between the power consumption and brightness. Their work

also claims that the total display power consumption is the sum of power consumptions

yielded by independent sub-pixel (red, green, and blue) power models. Our results appear

to contradict theirs, perhaps due to differences on the particular type of display we char-

acterized. We found that modeling sub-pixel power consumptions independently results

in 19% error for the N1 handset, as described later. We derived our own OLED model to
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refine the error to 4% on average.

For OLED displays, two factors determine a pixel’s power consumption: its color and

brightness level. A pixel color is specified by an RGB tuple [R, G, B], corresponding to

the intensities of red, green, and blue component. Each value in the tuple varies from 0 to a

maximum value of 255. Figure II.6(a) shows the relationship of pixel power consumption

to these two factors. Figure II.6(a) is obtained by setting all the pixels to a corresponding

primary color (red [255, 0, 0], green [0, 255, 0], and blue [0, 0, 255]) while different bright-

ness settings are applied. Figure II.6(a) is obtained by keeping the screen at full brightness

while different RGB values are displayed. For example, point A represents the power con-

sumption when all pixels on the display are set to dark blue [0, 0, 191]. Note that the power

consumption of a black screen has been subtracted from the direct power measurement of

the display to eliminate the impact of all other hardware components. From these figures,

we observe that the relationship between power consumption and brightness level can be

modeled using a linear function, while the relationship between power consumption and

RGB value can be best approximated with a quadratic function.

This paragraph describes modeling power consumptions of pixels displaying impure

(not just red, green, or blue) colors. Past work [19] claims that OLED pixel power con-

sumption can be modeled as the sum of sub-pixel power consumptions. In contrast, we

found that this assumption results in 19% error, perhaps due to characterizing different

types of OLED displays. Figure II.6(b) shows the comparison between a model that treats

sub-pixels as independent and a model that considers their interdependence. Our measure-

ment results indicate that the intensity of red, green, and blue in white’s spectrum is on

average 15% lower than the intensity of individual spectrum of red, green, and blue with

the same intensity settings. This is consistent with our findings. We speculate that this is a

result of manufacturers intentionally dimming impure colors, e.g., white, so that the max-
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Figure 2.6: (a) OLED power consumption and brightness. (b) Compensation power con-
sumption.

imum intensities of mixed and pure colors are similar. To compensate for this error, we

added an additional modulation component to model the difference in power consumption

between the sum of sub-pixel power and the measured values. Figure II.6(b) shows the

relationship between the modulation component and the sum of sub-pixel intensities.

Based on all the previous observations, we developed the following power model.

Ppixel = Rcoef · R2 +Gcoef ·G2 + Bcoef · B2 (2.4)

− modcoef · (R +G + B)2 and (2.5)

Pscreen = Bconst +

N∑
i=0

Ppixel,i, (2.6)

where Ppixel represents the pixel power model. R,G, andB represents the RGB value and

Rcoef ,Gcoef , andBcoef are the corresponding coefficients. modcoef represents the coefficient

for the modulation component. Pscreen is the display power model and Bconst is a constant

representing the power consumption when the display is black.

To estimate the power consumption of the display, we need to estimate sub-pixel in-

tensities across the display. The most accurate option would be to consider every pixel.

However, the overhead of doing this would be high. We evaluated sampling technique to

control overhead while preserving accuracy, and opted for a partially randomized tech-

nique to avoid bias when the display contains images with periodic patterns. Specifically,
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we divided the display into n equal-sized areas and randomly select one pixel in each area

to avoid biasing and aliasing. Section 4.5 shows error and overhead as a function of n.

2.2.5 Application-Level Power Model

Assigning energy consumption to concurrent running applications is challenging be-

cause power state transmissions are sometimes the accumulated result of actions by dif-

ferent applications.

For example, suppose that the Wi-Fi interface transmissions from the low power state

to the high power state when transmitting N packets per second. Now imagine that two

applications are transmitting at N/2 packets per second, resulting in the Wi-Fi interface

entering the high power state. Similarly imagine one application transmits at N packets

per second and the other at 9N packets per second. In both these cases, the Wi-Fi interface

is in the high power state but it is unclear how to assign power usage to each application. In

the first case neither application would trigger the high power state alone so does it make

sense to charge them for it? In the second case both applications would trigger the high

power state and so should be charged roughly the same amount but what amount should

that be?

One possible solution is to divide component power between each application based on

the application’s workload. This means in the first case each application would be assigned

half of the high power state’s power and in the second case one would be assigned 1/10

the power and the other 9/10 the power. This solution has the favorable property that the

sum of application power usage is equal to the global power usage. This solution is naïve,

however, as power usage is not a linear function of transmission rate so it makes little

sense to break it up this way. This solution seems even more suspect when we consider

that the Wi-Fi interface’s power usage is not a one dimensional function.

Instead we need a solution that works independently of each component’s power func-
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tion and is intuitive to application developers, the major target users of PowerTutor. For

each component, we compute the power consumption as if each particular application

were running alone. This would mean in case 1, each application would be charged for

the lower power Wi-Fi state and in case 2, each application would be charged for the high

power state. This loses the nice property that the sum of application power consumptions

is equal to the global power consumption (and as these two cases illustrate it is neither

an under- nor over-estimate). However, with this definition we can understand the power

consumption of an application independently of what else is running. This allows users

of PowerTutor to observe similar application-level power characteristics regardless of re-

source sharing: a useful property for engineers focusing on optimizing particular applica-

tions. Note that PowerTutor also reports an accurate system-level power consumption.

There are limitations with this solution; however, we believe it is the best definition

available. First, if applications are contending for resources, it is difficult to predict how

they would have behaved if they were executing alone. Second, in some cases we see

one application invoking another to perform some task. It is unclear how to assign power

consumption in this case. On real Android systems, this behavior happens frequently

with the media server process. Third, applications that use clever techniques like making

transmissions at the same time as other applications don’t get rewarded in this scheme.

However, there is little that we can do about the first case. Addressing the other two issues

requires a high-level understanding of the semantics of the applications involved, which is

currently beyond the scope of our tool.

2.3 Intra- and Inter-Phone Power Consumption Variation
We previously explained the construction of a power model for an ADP1 phone. In

order to determine how general the power model generated for one phone is, we compared

models for different instances of the same type of phone, and models for different types of
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Table 2.3: Variation of Power Models Among Phones
Variation (%) Intra Intra Inter

-ADP1 -ADP2 -type

CPU
βuh 1.46 9.6 -23.16
βCPU 9.05 9.20 33.28

LCD βbr 1.56 2.5 -28.13

Wi-Fi
βWi-Fih 1.31 3.55 2.86
βWi-Fil 4.89 4.86 -31

Cell
3GDCH 1.03 1.73 62.01
3GFCH 2.80 2.94 27.42

GPS
GPSon 1.35 3.01 -5.12
GPSsl 2.48 3.82 -11.50

Audio βaudio 3.31 2.57 -59.37

phones. In this section, we characterize two ADP1 phones and four ADP2 (HTC Magic)

phones. HTC Magic has the same processor and LCD specifications as the ADP1 (HTC

Dream), but a different cellular interface.

Table 2.3 shows the inter- and intra-type power model variation for ADP1 and ADP2

phones. The intra-type variation is the standard deviation normalized by the mean of

the sample phones of the same type. The inter-type variation is the difference between the

means of the samples for the two types of phones. Note that the power model parameters in

the table can also be seen as power measurements for a particular workload, i.e., variation

in power model parameters is linearly related to prediction error. For example, for an

application using the audio device, we expect to see less than 4% prediction error from

using the power model derived for an ADP1 to predict audio device power consumption

for another ADP1. These data provide some support for the following conclusions.

First, inter-type variation is significant. Among all the hardware components, the

power models for cellular interfaces differ the most, with variation of 62% between ADP1

and ADP2. This result is consistent with data from the Environment Working Group [26],

which shows that the ADP2 has greater cellular interface radiation than the ADP1. Inter-

estingly, although ADP1 and ADP2 have the same LCD display specifications, the power
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model parameters differ by more than 20%. We speculate that the LCD display in the

ADP2 is a more energy-efficient part with the same display quality specifications.

Second, intra-type variation is small. We presently have few intra-type power model

samples. To draw a tentative conclusion, we calculated the confidence interval for the

intra-type sample variance under the assumption that the distribution of power consump-

tion differences between phones has a Gaussian distribution. With 95% confidence, the

maximum intra-type variance is less than 10.4% for all components. This conclusion is

tentative because we have not demonstrated that the power consumption difference distri-

bution is Gaussian.

2.4 Battery State Based Automated Power Model Generation

We have shown that the variation between power models for different types of phones

is significant. This necessitates building a new power model for each type of phone. Cur-

rent manual measurement based modeling techniques are time-consuming and require

access to power measurement instruments. Ideally, it would be possible to quickly and

conveniently generate accurate power models for new types of phones without access to

special equipment.

We propose a power model generation technique that uses knowledge of battery dis-

charge behavior and the built-in battery voltage sensors in many embedded system, to

determine the average power consumption resulting from placing components into differ-

ent power states. This power characterization technique does not require external power

measurement equipment. We now give a brief tutorial on the properties of lithium-ion

batteries, which will provide a foundation for explaining the proposed power model gen-

eration technique.
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Figure 2.7: Discharge curve of ADP2 lithium-ion battery.

2.4.1 Battery Basics

Lithium-ion batteries are popular for portable embedded systems due to their high

energy-to-weight ratios, long service lifetimes, and low self-discharge currents.

The voltage of a lithium-ion battery changes during discharge, allowing energy de-

pletion rate (power consumption) to be estimated based on changes to observed voltage.

We now explain the reasons for and properties of this voltage change. During discharge,

current within the battery is carried by lithium ions (Li+) moving from negative to positive

electrodes, through the non-aqueous electrolyte and separator diaphragm [37]. Figure 2.7

shows the discharge curve of the lithium-ion battery in an ADP2 phone with a (relatively

low) discharge current of 64.5 mA. The state of discharge (SOD) is the percent of the

rated battery energy that has been discharged. As shown in the figure, the discharge curve

is monotonically decreasing. Note that both the energy capacity and the discharge curve

change with discharge current, temperature, and battery age [12], which may potentially

influence the accuracy of the proposed technique, as we will discuss in Section 2.4.2.

The internal impedance of a battery and its load (i.e., a phone) influence its output

voltage. A battery can be modeled as a variable resistor in series with a variable voltage

source, as shown in Figure 2.4.2. Rload is the equivalent resistance of the phone, Rint is the

internal resistance of the battery, and Vint is the internal voltage of the battery. Due to the

voltage drop across Rint, the terminal voltage (Vout) is lower than Vint. Vint and Rint can be
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modeled as functions of SOD.

2.4.2 Battery State Based Model Generation

The main idea of the battery state based power model generation technique is to use the

training software described in Section 2.2 to control phone component power and activity

states. The phone components are held in a particular state for a significant period of time

and the change in battery SOD is determined using the built-in battery voltage sensor,

allowing an estimate of the power consumption for that power management and activity

state. At this point, the regression technique described in Section 2.2 can be used to build

a power model. One question remains: how can the battery voltage readings be converted

into power consumption values? To achieve that, we need to determine the SOD (i.e., total

consumed energy) variation within a testing interval based on the sensed voltages:

P × (t1 − t2) = E × (SOD(V1) − SOD(V2)), (2.7)

where P is the average power consumption in time interval [t1, t2], E is the rated battery

energy capacity, and S OD(Vi) is the battery state-of-discharge at voltage Vi (i is 1 or 2).

The following challenges remain for the proposed technique.

Vint

Rint

Rload
Vout

Battery Phone

Figure 2.8: Equivalent circuit for
battery.

Determining the SOD based on voltage: As

shown in Section 2.4.1, the present voltage can be

used for an inverse lookup of SOD based on the dis-

charge curve. However, there is a potential problem

with this idea. The discharge curves of different bat-

teries may vary. Using the same look-up table for all

batteries may be inaccurate. We therefore characterize the discharge curve for each bat-

tery separately. During characterization, the training software discharges the battery from

fully charged to completely discharged states using a constant discharge current, thereby
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maintaining a linear relationship between SOD and discharging time. A logger runs in

background to record the battery output voltage. Note that even for the same phone, the

discharge curve may vary with temperature and aging. To eliminate the effect of these ex-

ternal factors, we recommend that characterization be conducted at room temperature (i.e.,

73–78°F), in which range the average difference of discharge curve is 4.3%. We acquire

the difference by comparing the corresponding voltages at uniformly distributed samples

of SOD on the SOD curves under the highest (112.2°F) and lowest temperature (89.6°F)

reached by our training suites.

We use a piece-wise linear function to model the non-linear relationship between SOD

and battery voltage. To derive the function, we traverse {(S OD1, voltage1), · · · , (S ODn, voltagen)},

which is ordered by increasing voltage values. Each additional SOD and voltage tuple is

grouped with the data points on the most recent line segment and linear regression fitting

is used. If the maximum error returned by regression is larger than an error threshold, in

our case 0.1%, we start a new line segment at the current point.

Determining the energy capacity E: As shown in Equation 2.7, E is needed to de-

termine power consumption. However, nominal energy capacity may change due to aging

and discharge rate. There are two potential solutions to the aging problem. A user with

a new battery (e.g., an early adopter wanting to characterize a new type of phone for the

first time) can read E from the battery label. For an user with old battery, it would in-

stead be necessary to determine the battery energy based on knowledge of system power

consumption in some state, e.g., the maximum CPU power consumption. Note that it

would be possible to build a power model for all the components in a new phone without

knowing the battery initial energy or the power consumption of any component. However,

the power consumptions in this model would be relative to the battery energy, i.e., know-

ing absolute component power consumptions requires knowledge of the absolute value of
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some energy or power consumption number within the model.

Different discharge rates result in different battery energy capacities. We quantified

the error resulting from assuming that the battery energy capacity is independent of dis-

charge rate by using the lowest and highest discharge rates the phone can produce during

discharge curve characterization. For our ADP2 battery, this results in less than 2.4% error

in power consumption estimates.

The impact of internal resistance: Due to internal battery resistance, the shape of

the discharge curve depends on the discharge current. As a result, even if the internal

voltage source has constant voltage, i.e., the battery has the same SOD, the terminal volt-

age depends on discharge current. Worse yet, the internal resistance depends on SOD. To

eliminate the impact of internal resistance, we switch all components of the phone to their

low-power modes to minimize discharge current when taking a voltage reading. This min-

imizes voltage drop across Rint in Figure 2.4.2, thereby minimizing the difference between

Vout and Vint. We used a voltmeter to verify that Vint is within 0.03 V of Vout under these

conditions.

Some phones that have recently started to appear on the market are equipped with built-

in current sensors. This simplifies determining the power consumption for each component

power state. However, built-in current sensors are not yet common, so relying on their

presence reduces the generality of a power modeling technique.

2.5 Power Model Validation

In this section, we evaluate the accuracies of the meter-based (see Section 2.2) and

battery-based (see Section 2.4) power models. We first evaluate the meter-based model

when running popular applications. Then, we explain the implementation of the proposed

battery-based model construction technique and evaluate the resulting model by compar-
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Figure 2.9: Power profiles for selected applications.

ing it with the meter based model.

2.5.1 Accuracy Analysis for the Meter-Based System Power Model

We used similar setup as shown in Figure 2.1 for validation. We validated the system-

model on HTC Dream and the OLED model on N1 Phone. Note that we validated OLED

model individually because of its difference with prior model.

System-level power model accuracy: We validated the power model on six popular

applications during validation.

• Break the Block: A game that uses CPU, LCD, and Audio.
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• Google Talk: An instant message application that uses CPU, LCD, Wi-Fi/3G, and

Audio.

• Google Maps: A web mapping application that uses CPU, LCD, Wi-Fi/3G, and

GPS.

• The Weather Channel: A weather forecast application that uses CPU, LCD, Wi-

Fi/3G, and GPS.

• YouTube: A web-based video sharing application that uses CPU, LCD, and Wi-

Fi/3G.

• Browser: The default web browser on Android that uses CPU, LCD, and Wi-

Fi/3G.

We repeated the experiment under the following conditions. We used full brightness for

Google Maps, Break the Block, and Gtalk; brightness level 102 for YouTube; brightness

level 210 for The Weather Channel; and brightness level 36 for Browser. We enabled 3G

in Gtalk and used Wi-Fi for all other applications.

To evaluate the accuracy of the model, we used two error metrics. abs avg is defined

as the average of the absolute values of the errors, i.e.,∣∣∣∣∣measured − predicted
measured

∣∣∣∣∣ . (2.8)

To estimate the accuracy of the model when estimating the impact of software design on

phone battery lifespan, we used another metric, avg, i.e.,

measured − predicted
measured

(2.9)

This metric better gauges accuracy predicting the power consumption over long time

spans.

Figure 2.9 shows the modeled and measured power consumptions for each application.

Error histograms are also shown. The figures show that the average long-term error (avg)
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Figure 2.10: Error distribution for LCD. (a) 15 minutes. (b) 30 minutes. (c) 45 mintues.

is less than 2.5% over the application’s lifespan and that average error (abs avg) is less

than 10% for 1 second intervals.

We also measured the power overhead of the on-line power consumption estimation

technique. It is only 80 mW, an order of magnitude lower than the power consumption of

high-power states of most smartphone components.

OLED model validation: During OLED model validation, the N1 runs two programs:

a logger to predict OLED power consumption and an exerciser changing the display on the

screen. Every benchmark picture is displayed for 2 min. The predicted result is compared

with the measured power consumption. Note that the power consumption due to CPU

overhead of the logger is excluded from the measurement.

To validate the OLED power model, we did the following two things: (1) validate the

pixel power model by sampling the full screen for different screen display, (2) validate the

sampling scheme and determine an appropriate sample number by computing the standard

deviation in worst case as a function of energy overhead. The worst case happens when

the screen is half black and half white because it has the biggest standard deviation of the

pixel power consumption. More details will be discussed below.

To validate the pixel power model on frequently displayed pictures with different

brightness settings, we did the following two things: (1) we selected 5 default Android

wall papers and 3 screen shots of popular applications, e.g., Google Maps, Browser and

Pandora, (2) we set the brightness to three different levels including 10%, 50%, and 100%
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Figure 2.11: OLED model validation and overhead.(a) OLED pixel model validation. (b)
Overhead and error for difference sample number.

of full brightness for each picture. Figure II.11(a) shows the percentage error of the pre-

dicted power value from measured power value. From Figure II.11(a), we observe that the

maximum error is less than 8%, while the average error is less than 4%.

In our implementation we sampled a small set of the pixels to estimate the average

power per pixel. The standard deviation of the pixel power mean estimator drawing n

samples from a population of N (800×480) from a sample with standard deviation σ is

given by

σ

√
1
n

(1 −
n − 1
N − 1

) (2.10)

The maximum σ is given by Pwhite−Pblack
4 representing a half white half black image and

is approximately 298mW.

We had the implementation of sampling both in Java and C for PowerTutor for different

handset device. Figure II.11(b) shows how the number of sampled pixels impact the CPU

overhead and the error due to sampling. We choose the number of pixels sampled to be 500

(0.13% of the total number of pixels) yielding a standard deviation of our power estimate

of 13.4mW in the worst case which we think is reasonable. σ for most images being

displayed will likely be much lower than 298mW.
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Figure 2.12: Hardware component power for BBC News. (a) 3G power. (b) CPU power.
(c) Wi-Fi power.

2.5.2 Accuracy Analysis for Application-Level Power Model

To validate application power division we ran an application by itself and with another

application running in the background and measured the power usage of each component

with PowerTutor in both cases. This required us to repeat the same sequence of user events

for the application in different conditions. To accomplish this we recorded events from

/dev/input/eventX, exercised the program, and sent the events back to /dev/input/eventX

to replay the application. To account for minor changes in the execution across runs it

was necessary to repeat the test in each situation 20 times to get a stable mean power each

second.

To validate the division of power per application we need to fall back on the definition

of application power decided on earlier. That is an application’s power consumption as in-

dicated by PowerTutor should be the power usage of that application as if it were running

alone. It is important to understand that this definition implies challenging implementa-

tion. Multiple applications running at the same time can cause contention for resources in

addition to causing internal hardware states to differ, affecting the overall execution of an

application. We provide here an analysis of our system as a baseline for future work in the

area.
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Our results are based on the BBC News application’s power consumption when run-

ning by itself (One App) and while running with the TuneIn Radio application (Two Apps)

on a Nexus One. An execution that visited several news articles was recorded and replayed

20 times for each of the four combinations of 3G/Wi-Fi and one/two apps. The averages

of each component’s power consumption are recorded in Figure II.12(a), Figure II.12(b),

and Figure II.12(c) when BBC News is running by itself and when TuneIn Radio player

is streaming a news broadcast at 48 kbps. OLED power consumption has been omitted as

the values were nearly identical at all times.

The OLED component had fairly low error and had an average error of 8.25 mW

(1.82% of the average power). 3G (Figure II.12(a)) also has low error most of the time

with a median error of 0 mW and average error of 28.5 mW (3.22% of the average power).

This error could be attributed to differences caused by contention of the radio resource

and by the radio being in the dedicated channel (DCH) state for the entire experiment in

the two-application case. When our tested application initiated a data transfer in the two-

application case it would not go through the normal state transitions as the radio is already

in the DCH state.

CPU (Figure II.12(b)) had the second-most average error at 40.2 mW (32.2% of the

average power). This error can be attributed to scheduling differences of the operating

system since there are other applications running. The exact cause of the differences is

difficult to determine. Finally Wi-Fi (Figure II.12(c)) had the highest (absolute) error at

47.6 mW (20.2% of the average power). Interestingly the difference in total Wi-Fi power

across the two cases was only 4.0%. A potential source of error could be that the Wi-Fi

interface is more likely to go into the high power state when the two applications are run-

ning resulting in higher Wi-Fi power consumption initially and lower power consumption

after the request has finished.
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Overall, this experiment shows that our application-level power model has a good fi-

delity. The power estimation of the target application when running with another applica-

tion (Two Apps) tracks the changes in power consumption when it runs alone (One App).

This enables the application developers to have a good understanding of what applications

are using the most energy and what components they are using.

2.5.3 Implementation of the Automatic Battery-Based Model Generation Technique

The power modeling process may be automated as described in Figure 4.2. As de-

scribed in Section 2.4, constructing the battery discharge curve requires three steps.

1. Obtain the battery discharge curve for each individual device. The battery starts

in a fully charged state. We characterize the discharge curve individually for each phone.

2. Determine the power consumption for each component state. In this step, the

state of a single component is varied while other components are kept in low-power states.

In order to determine the power consumption for each power state, the battery voltage at

the beginning and the end of the power state discharge interval are recorded. The phone is

placed in a low-power state immediately before taking a voltage reading to eliminate the

impact of the voltage drop across the battery internal resistance. We repeatedly measure

voltage for 1 minute, and discharge the battery for 15 minutes between measurements

3. Perform regression to derive the power model. After the battery voltage differ-

ences for each power state discharge interval are collected, we use them to calculate aver-

age power consumption within the 15-minute intervals. We then use regression to generate

the power model.

The discharge interval for each power state is difficult to select. Minimizing this du-

ration makes the characterization process more convenient. However, the interval must be

long enough for the change in battery voltage to exceed noise. In order to determine the
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Figure 2.13: Battery SOD based power model construction.

optimal interval, we do statistical analysis of the model error distribution as a function of

battery discharge interval per power state. Figure 2.12 shows the error distribution of the

LCD model. We did this analysis for all components.

To estimate the error distribution of the battery SOD based technique, one could repeat

the entire model construction process many times with different discharge intervals. How-

ever, there is a more efficient way to gather the same data. Bootstrapping is a technique to

treat an initial set of samples as a stand-in for a population and to re-sample from it repeat-

edly, with replacement. In our experiment, we collect 6 samples at each LCD brightness

with a discharge duration of 15 minutes. We then randomly select one sample for each

brightness level. By doing regression on these randomly selected samples, we are able to

derive an LCD power model. The error is defined as the percentage difference between

the newly-derived model and the meter-based model. Repeating this process 1,000 times

allows us to determine the error distribution for models generated using 15-minute battery

discharge intervals. To determine the distribution for 30-minute intervals, we randomly
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select and average two 15-minute sample points without replacement at each brightness

level. Note that the experiment was designed to minimize correlation between different

samples for the same power state; we repeatedly cycled through all power states six times.

We can draw two conclusions from Figure 2.12. First, the mean of the errors for all

discharge intervals deviates from zero by no more than 0.4%. This suggests that, given an

adequate battery discharge interval, the battery-based model is as accurate as the meter-

based model. Second, the variance of the distribution decreases with longer intervals. For

a 45-minute interval, more than 92% of trials have errors less than 10%.

These two conclusions suggest two alternative model-construction strategies. Users

can be allowed to choose a trade-off between model construction time and accuracy. We

expect that most users would allow a power model to be automatically constructed while

they sleep (6.5 hours for a 15-minute battery discharge interval). Another alternative is to

have a central web-based system gradually learn the model from samples collected from

multiple users. Each user might characterize a phone using a 15-minute battery discharge

interval and submit the data. The data for multiple users of the same type of phone could

be combined to produce an accurate model. Note that model construction would only need

to be done once for a new type of phone, and that automating this process and removing the

need for special power measurement equipment would represent a significant improvement

on current conditions.

2.5.4 Accuracy Analysis for the Battery-Based Power Model

Figure 2.14 shows the error distributions of the battery-based power model using a

15-minute battery discharge interval. The error distribution is generated as described in

Section 2.5.3. The box boundaries indicate the 25th and 75th percentiles and the line span

indicates the maximum positive and negative errors. The line in the middle of the box is
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the mean of all errors.

2.6 Power Estimation Tool

This section describes PowerTutor [44], an online power estimation system that has

been implemented for Android platform smartphones. PowerTutor provides accurate,

real-time power consumption estimates for power-intensive hardware components includ-

ing CPU and LCD/OLED display as well as GPS, Wi-Fi, audio, and cellular interfaces.

It uses both the system-level and application-level power models generated using the pro-

posed manual (see Section 2.2) or automated (see Section 2.4) characterization techniques.

The interface for PowerTutor is shown in Figure 2.15. Figure 2.15(a) shows its applica-

tion view, on which the list of applications together with their power consumptions are

shown. Figure 2.15(b) shows an example display of the power consumption traces of var-

ious hardware components. Figure 2.15(c) shows the accumulated energy consumption

decomposed by hardware components of the entire phone.

PowerTutor has two main purposes:

• Application developers can use PowerTutor to rapidly, accurately, and conveniently

determine the impact of software design changes on power consumption. It provides a time

series of power consumption estimates per hardware component of the target application,

allowing developers to identify power inefficient behavior, much of which results from
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Figure 2.15: PowerTutor interface. (a) Application view. (b) Chart view. (c) Pie view.

unintentional but inappropriate use of smartphone hardware components.

• Smartphone owners can use PowerTutor to determine the power consumption char-

acteristics of competing applications, allowing them to make better informed decisions

about which applications to use or buy. Most existing application descriptions and reviews

do not mention power consumption. PowerTutor also estimates battery lifespan subject to

a particular smartphone owner’s actual application usage patterns.

PowerTutor has been released on the Android market and has been used by more than

66,000 people.

2.6.1 Comparison to Android’s Built-in Meter

Android platform has a built-in battery usage meter. However, the built-in meter was

built for a different use case than PowerTutor. Specifically, the built-in meter does not do

active monitoring and is intended only to give the user a loose idea of the relative energy

consumptions between applications.

We summarized the key differences in Table 2.4. We learned these differences by both

using the built-in meter and reading its source. The key benefit of the built-in meter is

that it uses nearly no energy itself because it is not actively polling anything. However this
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comes at the expense of being able to use accurate models of the phone’s various hardware

components. Instead the battery meter must make rough estimates of the energy using

simple linear models that do not (and could not) take into account intermediate hardware

state.

Table 2.4: Comparison Between Android Built-In Power Meter and PowerTutor.
Feature Built-in Power-

Meter Tutor
Active Polling No Yes

Per Application Yes Yes
Per Component Partially Yes
Absolute Power No Yes

History/Logs No Yes
Accurate Models No Yes

2.7 Understanding optimization opportunities from real-world user
traces

As shown in Section 4.5, different applications have varying power consumption, as

well as power distribution on hardware components. Therefore, to understand the op-

portunities for energy optimization, it is necessary for the developers and architects to

understand the real-world workload and usage scenarios. In this section, we explore the

real-world user traces uploaded by PowerTutor users. We will first describe the data set on

which we draw our observations and then present the observations and recommendations

for system and application design.

2.7.1 Data Set Description

Since PowerTutor was released in November 2009, we have gathered more than 2,000

unique users who have more than one month of traces from more than 50 device types.

Given that we currently have the power models for HTC Dream, HTC Sapphire, and Nexus

One phones, we focus our power analysis on the users of only these three types. Section 2.5
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Table 2.5: Dataset summary
Type Num. of users Time length

Passion 58 5 - 55 weeks
Sapphire 37 5 - 56 weeks
Dream 42 5 - 42 weeks
Total 137 5 - 56 weeks

Table 2.6: Data Recorded Each Second by PowerTutor.

Type Power Utils
CPU CPU (system/app) power CPU frequency, CPU usr time, CPU sys time
LCD LCD (system/app) power screen brightness

OLED OLED (system/app) power pixel power, screen brightness
WiFi WiFi (system/app) power WiFi state, packet rate, uplink rate, link speed
3G 3G (system/app) power 3G state, operator, byte rate

GPS GPS (system/some app) power GPS state, number of satellites visible
Audio Audio power Audio state (on or off)

Application app power CPU utilization, 3G/WiFi byte rate

shows the number of users and time length of their traces for each phone type. Section 2.6

summarizes the content we logged in PowerTutor.

2.7.2 Key Observations

By analyzing the above data set, we draw the following four observations.

Display and 3G together dominate the total energy consumption. Item 2.16 shows

the relative energy consumption on hardware components. This figure suggests two con-

clusions:

1. Display, 3G, CPU, and Wi-Fi device consume more than 99% of the power con-

sumption while the energy consumption of GPS and audio device can be ignored. This

is mainly because the time of applications spent using audio and GPS device is signifi-

cant smaller than the time applications spent on other components. Among all four power

hungry hardware components, display and 3G device dominate the total energy consump-

tion: display consumes 45.5% of total energy while 3G consumes 24.8% of total energy.

Interestingly, this observation is different from a prior observation [50] which claims that
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Figure 2.16: Energy decomposition for different phone types.

Table 2.7: Energy Consumed in Idle for 3G and Display.
Device Total Passion (N1) Sapphire (ADP2) Dream (ADP1)
Display 40.33% 44.19% 33.26% 42.96%

3G 38.73% 40.98% 38.49% 33.96%

display and CPU are the dominant devices. This difference is discussed with greater details

in the following observation.

2. The ranking of dominant component depends on phone types. As shown in

Item 2.16, display and 3G dominate for both Passion (N1) and Sapphire (ADP2) while

display and CPU dominate for Dream (ADP1). Note that the processors’ speed of Passion

(N1) and Sapphire (ADP2) are faster than Dream (ADP1) phone. We suspect that this

difference in CPU speed partially contributes to the difference in ranking: same workload

is finished faster on faster processor and therefore results in less energy consumption for

CPU.

Opportunities for energy optimization on display and 3G devices are significant.

After determining that the dominant devices are display and 3G devices, the next question

we should ask is how much of their energy consumption can be reduced. To answer this,

we start by decomposing the energy further on energy spent when users are actively using

the device and when they are not. More specifically, for display, we are interested in the

energy consumed when users are not actively interacting with their smartphones. We ap-

proximate this by monitoring the CPU utilization: utilization above 5% is considered as
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active interaction. For 3G device, we are interested in the energy discharged when the de-

vice is staying at high power state without active transmission as explained in Section 2.2.

Item 2.7 summarizes our findings. 40.33% of display energy is consumed when the

phone is not actively interacting. This inactive duration can be resulted from two scenarios:

(1) users are reading the content in applications between interactions, e.g., reading through

the content to find the next button to click. (2) Users are done interacting with the device

and the display is about to turn off based on the time-out policy. This result suggests that

if either of the above scenario can be shortened, for example, a clearer designed UI or

buttons with bigger fonts, so that user can find the next step faster, the battery life can be

extended. 38.73% of 3G energy is spent on the tail duration without active transmission.

This indicates that most of 3G traffic has short duration so that the tail overhead takes up

a significant portion. To eliminate this overhead, one solution for developers is to reduce

periodic small traffic transmission and aggregate them into bigger chunk. This suggestion

is consistent with prior work [23].

Current real-world workload rarely keeps the CPU fully utilized. To understand

the optimization opportunity for CPU, we obtain the CPU utilization histogram of all sam-

ples for all traces. The four figures on the left in 2.17 summarize the result. This re-

sult leads to two observations: (1) the processor spends most of its time idling or doing

non-intensive workloads, i.e., the processor is rarely fully utilized. This suggests a very

counter-intuitive conclusion: processor nowadays is fast enough to handle current work-

load. That is to say, we do not need a faster processor for performance purpose. Note that

this statement is not true if any the following three assumptions is true: future workloads

evolves and therefore has more CPU intensive workloads; instantaneous CPU utilization

distribution is not the same as 1-second averaged CPU utilization distribution; although

the processor is rarely highly utilized, it is critical for users’ experience when it is highly
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Figure 2.17: (left) Histogram of CPU utilizations. (right) Energy weighted histogram of
CPU utilizations.

utilized. (2) With processor speed improves, the histogram shifts toward left. For example,

with Dream (ADP1) and Sapphire (ADP2), the spikes appear between 5%-10% utilization,

while with Passion (N1), the spike appears between 0%-5%. This shift suggests the im-

provement of processor speed, workload that used to run with a higher utilization takes

smaller utilization with a faster processor.

Processor architects need to pay attention to optimize the energy efficiency when

the processor is almost fully utilized and almost idle. The right four figures in 2.17
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demonstrate the energy weighted histogram of CPU utilization. Each bucket represents the

energy spent in that utilization bucket instead of the total count of samples in the bucket.

For example, the first bucket in 2.17(d) represents that 7.5% of energy is spent when the

CPU is 0%-5% utilized. These four figures also lead to two observations: (1) despite that

processors are rarely highly utilized, the energy consumed when they are highly utilized

cannot be ignored, especially for the fastest phone, Passion. That is to say, processor

architects should focus on optimizing energy efficiency on both the high and low utilization

ends for the processor instead of paying their attention on every utilization level. (2)

Energy efficiency of high utilization becomes more important with a faster processor. This

is because the percentage of energy consumed when the CPU is highly utilized increases

with the maximum frequency increases, e.g., 36% of CPU energy is consumed for Passion

when the utilization is above 70% while only 33% and 25% of CPU energy is consumed

for Sapphire and Dream.

2.8 Summary

This chapter has described an on-line power estimation and model generation frame-

work. The PowerTutor power estimation tool informs smartphone developers and users of

the power consumption implications of decisions about application design and use. The

power model in PowerTutor includes seven components: CPU and LCD as well as OLED,

GPS, Wi-Fi, audio, and cellular interfaces. For 10-second intervals, it is accurate to within

0.8% on average with at most 2.5% error. PowerTutor is also capable of estimating power

consumption of individual application even when there are concurrent applications run-

ning. A software implementation of the power estimation tool has been publicly released

on the Google Android Application Market. This chapter has also described PowerBooter,

an automatic battery state of discharge based power model generation technique. Power-
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Booter constructs power model without using a power meter. The result indicates that the

power model built with PowerBooter is accurate to within 4.1% of measured values for

10-second intervals.



CHAPTER III

Panappticon: Event-based Tracing to Optimize Mobile
Application and Platform Performance

3.1 Introduction

Most mobile applications are interactive, with a typical user interaction consisting of

an input from the user that triggers a series of operations culminating in user-visible out-

put, often an update to the display. User experience directly correlates with the perceived

responsiveness [14], so controlling and often minimizing the latency of such transactions

is of critical importance to application developers, system designers, and platform manu-

facturers.

We define a perceived user transaction as a series of operations started by the user’s

manipulation of the device (e.g., a screen touch or key press) and ended by a display

update. Intuitively, the transaction captures the interval between the user instructing the

device to do something and the expected result being displayed. Despite the importance

of such transaction latencies to user experience, there is little existing development tool

support to characterize or identify slow transactions, leaving developers in the dark. This

is mainly due to the asynchronous, multi-threaded nature of interactive applications. To

keep the UI responsive, applications must do lengthy or potentially-blocking operations on

background threads, complicating tracking of the execution flow of a single transaction.

50
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Even more difficult, other unrelated applications or system processes running on the same

device may influence the perceived performance. Therefore, simply capturing the internal

performance of an application is not sufficient to fully characterize transaction latencies.

For example, AppInsight [48] is a recent work that instruments application binaries to

study user transactions. This approach cannot directly explain poor performance induced

by interaction between unrelated processes, such as an application and system process.

We show one such example identified by our work in the following paragraph. Indeed, the

system must be studied as a whole.

In this work, we describe Panappticon1, a system that detects perceived user transac-

tions for real-world users and can help diagnose the reasons for poor performance. We

illustrate its use by deploying it in a 14-user, one-month user study. Panappticon is useful

to three types of people.

• Application developers can use the knowledge of user transactions to find inef-

ficient application code and optimize accordingly. For example, in our study we found

that Reddit News, a popular Android application, has many slow transactions due to CPU

contention between its thread and non-critical system activities it triggered. Simply de-

laying the non-critical work until after the user transaction completes would significantly

improve the user-perceived performance.

• Operating system designers can use the information to optimize system policies.

For example, in our study we found that the default DVFS (Dynamic Voltage and Fre-

quency Scaling) governor included with Android nearly doubles the latency for transac-

tions over 80 ms in duration, despite being designed for interactive workloads. An im-

proved governor is needed for such interactive workloads.

1A Panopticon is a type of building that allows a watchman to unobtrusively observe all occupants.
http://en.wikipedia.org/wiki/Panopticon



52

• Hardware designers and manufacturers can leverage the information to make in-

sightful architecture decisions for future devices. For example, we observe that typical

non-gaming applications are not parallelized and do not benefit from multi-core proces-

sors, suggesting that designers not neglect single-core performance.

Panappticon establishes causal relationships between user inputs and display updates

by tracking execution flow between threads, through asynchronous calls, and across in-

terprocess communication boundaries. This is achieved by instrumenting event handlers,

asynchronous call interfaces, and the interprocess communication mechanisms in both

user space and kernel space to log events from which the execution flow can be recon-

structed. The system further logs resource usage information including context switches,

network blocks, and disk blocks to help identify the root causes of slow transactions.

We validated Panappticon on ten open-source applications, manually confirming that

the detected user transactions and latencies were correct. Panappticon incurs an average

6.1% performance overhead and has unnoticeable impact on battery life.

This work makes three major contributions.

• We describe Panappticon, a system that automatically characterizes perceived user

transactions and provides detailed resource usage information, allowing for root-cause

diagnosis of the causes of slow transactions. The source code of Panappticon will be made

publicly available.

• We provide an unobtrusive methodology for extracting perceived user transaction

latencies based on causal relationships in the operations triggered by an input.

• We present results of a real-world user study of 14 Android users running Panapp-

ticon on their phones for one month. We present three case studies showing how Panappti-

con can benefit application developers, system developers, and smartphone manufactures.

The rest of the chapter is organized as follows. Section 3.2 formally describes the
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goal of Panappticon. It also gives one illustrative example of how Panappticon works and

explains the design challenges we encountered. Section 3.3 describes the methodology

used to identify user transactions and the overall system architecture. Section 3.4 describes

the detailed implementation for Android and Section 3.5 shows our efforts to validate this

implementation and discusses its limitations. Finally, Section 3.6 presents our analysis

of the data collected from the user study. This analysis indicates potential application or

system performance inefficiencies and suggests possible solutions. Section 5.3 describes

related work.

3.2 Goals and Design Challenges

We designed and implemented a system that identifies user-perceived transactions for

applications and exposes their performance bottlenecks. We anticipate this work to be

most useful to application developers, system developers, and smartphone manufacturers

who want to improve the user-perceived performance of their designs by reducing transac-

tion latency. In this section, we state our goal, show one illustrative example, and explain

the design challenges.

3.2.1 Design goal and example

A perceivable user transaction refers to a series of operations in the system started by

a user’s input to the device, e.g., a screen touch or button press, and ending with a display

update. The latency between the UI input and the update captures the latency perceived

by users. That is, any operation not included in the user-perceived transaction does not

influence the perceived latency and therefore does not directly impact user experience.

Note that some UI inputs can trigger multiple display updates. In such case, we define the

last display update as the end of the transaction.

Figure 3.1 shows one illustrative example of a user-perceived transaction. Imagine
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Figure 3.1: Illustrative example of perceivable user transaction: horizontal direction rep-
resents time while vertical direction represents different threads.

a simple application that upon a button press, downloads and displays a celebrity quote.

As shown in Figure 3.1, the transaction is started by a button press. In the UI event

handler triggered by this input, the main UI thread submits an asynchronous task to a

worker thread to download the quote. During execution of the asynchronous task, the

worker thread may block while waiting for packets from the network. Eventually after the

download finishes, the worker thread posts a message back to the UI thread to display the

quote. In this example, the operations between the user input and display update form one

user-perceived transaction.

Panappticon seeks to identify such user-perceived transactions and identify the perfor-

mance bottlenecks for each. To achieve this goal in the preceding example, the system

must record the user input and, based on the asynchronous call, establish a causal relation-

ship between the UI event handling and the worker thread execution. Then, the system

must record the network block and, finally, link the worker thread execution to the UI

update by tracking the posted message.

To understand the performance bottleneck for perceived user transaction, we need to

identify the critical path for each transaction and understand the dominant component on

such path. Critical path is the bottleneck path whose length captures the perceived latency.
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Changing the length of any link on such path would also change user perceived latency.

In the example above, the path between the input and update through the worker thread

represents the critical path and network latency dominates the latency of it.

3.2.2 Design challenges

To design a system that achieves the above goal, we are faced with the following

challenges:

• A user transaction can involve execution across thread and process boundaries.

For example, in the preceding example, the main thread submits the real work to be done

asynchronously on a background thread. In fact, doing long running operations on back-

ground threads is a common Android programming pattern, as explained in Section 3.4.

Even more challenging, some applications contain two or more independent processes,

one running the UI and the others background work, with all actively involved in a user-

perceived transaction. Therefore, we must track asynchronous (and synchronous) calls

across thread and process boundaries.

• There is not perfect temporal correlations between user inputs and display up-

dates. In the preceding example, it is possible that other display updates are triggered by

a change in system state (e.g., a change in network connectivity) between our input and

display update. Or in a more complicated application, a second user transaction might

start before the first finishes. Both scenarios break the temporal correlations between the

user input and display update, ruling out the possibility of simply grouping display updates

with the prior input. Consequently, our system must explicitly track causal relationships

among operations.

• It is necessary to know the underlying hardware state. One of our goals is to help

system and application developers determine the reasons for lengthy transactions. Possible
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causes include contention for the processor, long blocking times on network or disk IO, or

poorly designed system policies such as DVFS. For instance, in our running example, if

the network blocking time is reduced, the user-perceived latency would also be reduced.

To achieve this goal, we must efficiently log fine-grained resource usage information, such

as IO blocking times and context switches.

• Mobile device are resource constrained. The system must have low performance

and energy overheads so as to not influence user experience. Controlling overheads on

smartphones with limited CPU throughput, memory, and energy capacity requires effi-

cient logging of only necessary information and relegates the complicated user transaction

analysis to the server end.

3.3 Approach overview

Motivated by these design challenges, we developed and implemented an event-based

tracing methodology that can efficiently capture (1) the relationships between operations

to identify user transactions across threads or processes and (2) which resource (e.g., CPU,

network, disk, etc.) a thread is using or waiting on at each instant to reveal performance

bottlenecks. This section describes our methodology, shown in Figure 3.2.

3.3.1 Methodology overview

Tracking user transactions across threads and processes requires separating the exe-

cution traces of each thread into “atomic” intervals, identifying the causal relationships

among them, and determining the initial and terminal intervals. Such intervals repre-

sent work that always happens together, for example, a worker thread processing one task

from a task queue. Figure III.2(a) illustrates the execution trace of an example transaction

divided into intervals with arrows indicating the causal relationships among them. Fig-
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(a) Execution traces divided into “atomic” inter-
vals. The dotted arrows show the dependencies be-
tween intervals. The grey intervals are unrelated to
this user transaction and the dashed portions indi-
cate the thread is idle.
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(b) The events logged by Panappticon in order to
reconstruct the relationship graph. Submit events
mark the submission of tasks to the UI, AsycTask,
and Service threads, begin and finish events demar-
cate the processing of each task, and a fork event
marks the creation of the worker thread.

AsyncTask
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UI Thread I U U

(c) Relationship graph showing execution depen-
dencies for this transaction. Each node represents
one execution interval, with an incoming edge in-
dicating the interval was triggered by the preceding
node. Given this graph, the transaction latency is
easily computed from the critical path.

AsyncTask
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(d) From the events logged above, the full rela-
tionship graph can be reconstructed. The begin and
finish events demarcate the execution boundary for
each node and the submit and fork events indicate
which node triggered an interval.

Figure 3.2: Example execution sequence illustrating our methodology for user transac-
tion extraction. Figures III.2(a) and III.2(c) illustrate that the sequence can
be viewed as a directed acyclic graph of dependent execution intervals. Fig-
ures III.2(b) and III.2(d) show how the graph can be reconstructed from a log
of simple events. In this transaction, the user input enqueues an AsyncTask,
which after communicating with a background service via RPC, updates the
display. It also forks a background thread to read from disk and then update
the display. The transaction ends after the second display update.
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Figure 3.3: System architecture overview.

ure III.2(c) shows the graph abstraction of the causality relationships we wish to obtain.

Thus, to identify user transaction we have three challenges: (1) to split each execution

trace into “atomic” intervals, (2) to identify the causal relationships between the intervals,

and (3) to identify the intervals representing the beginning (i.e, user input) or end (i.e.,

display update) of a transaction path. We thus log events sufficient to reconstruct the rela-

tionship graphs, as illustrated in Figure III.2(b). For the first and seconds challenges, we

identify the popular programming paradigms used in Android and instrument the platform

to record events indicating their intervals. For the third, we record user input and display

update events in the Android framework code, thus tagging the current interval. From

these events, the relationship graph can be reconstructed as shown in Figure III.2(d).

To track which resources a thread is using or waiting on, we record events when each

resource is accessed, for example each context switch for the CPU, network blocks, and

disk IO blocks. Section 3.4 enumerates all the events we capture.
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3.3.2 Architecture overview

This section describes the system architecture. Panappticon is composed of the five

major components shown in Figure 3.3: a userspace logger, a kernelspace logger, an event

collector, a server-side collector and a user transaction analyzer.

Userspace logger and kernelspace logger: The userspace and kernelspace loggers

record the events mentioned in the preceding section. Specifically, input events, display

update events, and most events indicating causal relationships are captured in the userspace

logger, where the high-level programming paradigms make event-based inference easier.

The kernel logger captures resource utilization events and some events indicating causal

relationships across process boundaries, like forking and IPC transactions. Section 3.4

enumerates all the events captured by these two loggers. To minimize the performance

impacts of these loggers, both buffer events in memory, sending them to the collector in

batch when the buffer is full.

Event collector and server-side collector: The event collector is responsible for gath-

ering the traces from the loggers and sending them to server collector for processing. To

minimize performance and energy overheads while not losing data, the logs are uploaded

in batch on WiFi only. Failed transmissions are buffered to the SDcard and retried later.

User transaction analyzer: The user transaction analyzer extracts the relationship

graphs pursuant to the methodology of Section 3.3.1. From these graphs, it extracts user

transactions and their corresponding user-perceived latencies and resource usage. Sec-

tion 3.4 details this graph extraction.

3.4 Instrumentation details

Panappticon is an instrumented Android system that realizes the user transaction ex-

traction approach described in Section 3.3.1. There remain three major challenges with
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Panappticon: (1) what information needs to be captured? Capturing such information

should allow us to detect each user transaction and its resource usage with minimum over-

head. The answer to this question guides our instrumentation to the system on the device.

(2) How do we use these information to construct the relationship graph to link user input

with display update and analyze? (3) How can we do resource accounting for each trans-

action? The answers to the latter two questions describe our approach to conduct analysis

on the server side analyzer.

In this section, we first present the background knowledge of Android that is necessary

to answer the three questions. Then we will answer these questions separately. In the end,

we present a number of example graphs of common Android programming practices.

3.4.1 Background: Android

Android is a Linux-based operating system for mobile devices such as smartphones

and tablets developed by Google. It differs from a standard Linux distribution due to an

additional layer of abstraction between user applications and library, the application frame-

work layer. This layer provides a robust set of programming APIs and a responsive user

interface. Android has also been customized to achieve good performance with limited

memory and processing power. This subsection summarizes three major differences that

are related to our system.

Dedicated UI handling: Applications on Android are UI-centric in nature. All UI

related events, including handling user interactions and updating the display, are handled

on one dedicated thread, which is also the main thread of each application. To keep UI

responsiveness, developers should avoid lengthy operations, or blocking on the dedicated

UI thread [1]. Instead, they should create a separate worker thread to do most of the work.

This is also one of the major reasons that motivates us to track asynchronous calls across
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threads in the system.

Looper thread: Most Java threads managed by the Android system, including the

main thread of each application used for UI events, follow a message queue model. Mes-

sages are placed in a queue and the thread loops indefinitely, processing messages from

the head of the queue. In Android, such threads are called Looper threads and share a

common implementation of the message queue and looper functionality. The shared code

facilitates easy logging of message submission and execution events.

Inter-Process Communication (IPC): Android makes extensive use of an inter-process

communication implementation called Binder to coordinate between system and applica-

tion processes and to support services, application components that run in the background

and may expose methods for remote procedure call (RPC). We instrumented the kernel

portion of the Binder implementation to capture such calls.

3.4.2 What information do we capture?

There is a trade off between the information our system collects and the overhead of

the system. For example, a complete trace of every method in the system framework that

applications could potentially call during a transaction would allow us to have full knowl-

edge of the system status. However, such an approach would dramatically slow down the

application by orders of magnitude and therefore is not applicable for our purpose. To

this end, we record the minimum amount of information that is necessary to determine

perceived user transactions and their performance bottlenecks. These information can be

categorized into the following types: (1) user interaction events including screen touch

and key press, (2) causality between asynchronous calls and callbacks within and across

threads, (3) inter-process communication between threads and processes, (4) synchroniza-

tion mechanisms between threads such as locks and semaphores, (5) resource accounting
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for each thread such as context switch, blocking on network and disk IO, (6) other causality

relationships between threads, e.g., forking a thread, (7) display update, and (8) additional

information that helps to track foreground applications and application names . All the

information is summarized as event. A typical event has the following information:

Timestamp, Event_type, TID, Data, (CPU_core)

Note that CPU_core refers to the number of cores on while the event happens. It is

only available for kernel events.

Section 3.1 summarizes all the events our system captures along with the information

in each event. We are going to explain each type of event now.

User input: We record two types of input events: the input from screen touch or hard-

ware button and the input from the software keyboard. In Android, the first type of input

is dispatched to the foreground application through the onInput() callback method in the

View class. We instrumented our hooks in the onInput() method. Unlike the first type

of inputs, software keyboard inputs are first dispatched to the systemUI application that

translates the screen touch event into keyboard inputs. They then get passed to the fore-

ground applications though the input method editor. We instrumented the input method

editor in the specific Android library to record software keyboard inputs.

Asynchronous calls and callbacks: As we mentioned in Section 4.4.1, the UI centric

nature of Android applications requires developers to get length operations done asyn-

chronously though other worker threads. To achieve this, there are two common program-

ming models in Android: (1) starting a worker thread for the work and post a message

back to the UI thread to update display after the work is done, or (2) submit a task to the

pool of thread executors.

In the first model, we instrumented the MessageQueue class in the Android specific

framework library to capture the causal relationship between message enqueue and de-
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queue. Note that each message is associated with a unique message ID so that we can

easily match the enqueue and dequeue events.

Similarly, in the second model, we instrumented the ThreadPoolExecutor class in the

generic Java library to record the causal relationship between task submission and con-

sumption. To match these two events, we record the task ID, which is a hash value calcu-

lated from the memory address of the Runnable task.

Inter-process communication: As mentioned above, Android uses a kernel-level

inter-process communication implementation called Binder for RPC. For each process,

Binder manages a pool of threads to execute incoming RPC requests. For each call or

Binder transaction, we log the full RPC call by tracking events across process boundaries.

Resource accounting: To help determine if slow resources or high resource contention

caused a slow user transaction, we log access to the three main time-shared resources used

by Android applications: processor, network, and disk. For the processors, we log each

context switch, including the incoming thread ID, the outgoing thread ID, and the new

state of the old thread (still runnable, interruptible sleep, etc.). For the disk and network,

we log when a thread blocks on a read request and then when it resumes.

Synchronization mechanisms: Contention for virtual resources (worker threads, shared

data segments, etc.) could also cause high user transaction latency. Access to such re-

sources is usually mediated by synchronization primitives, so we log contested accesses to

the following in-kernel primitives: waitqueues, semaphores, mutexes, and futexes. Specif-

ically, we log when a thread blocks waiting for access, when it resumes from that block,

and, after releasing a primitive, which waiting threads are awakened. We do not log lock

or unlock events due to the volume of accesses—contested accesses are much rarer. We

ignore spinlocks for the same reason.

Display update: Android provides developers two major ways to update the display:
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the View class in the framework library and OpenGL to render display directly. Our system

only focuses on the first way right now because OpenGL is mainly used by complicated

graphic rendering in gaming application. The concept of user transaction in those gaming

application is different from our definition in interactive applications due to animation. We

will discuss this int more detail in Section 3.5.

The View class in Android framework is the basic building blocks for user interaction.

Each view occupies a rectangular area and is responsible for drawing and event handling

in that area. All the views on the screen are organized as a single tree, where ViewRoot

class is the root. Any invalidate() in the child view would trigger a view tree traversal to

update the display in ViewRoot class. Therefore, we placed our hooks in ViewRoot.

Additional information: In addition to all the information necessary to capture causal-

ity between events, we also collected additional information to help us better understand

the context of the transactions. For example, we recorded the application that enters and

exits the foreground to distinguish the application the user interacts with from system ap-

plications. This is achieved by modifying the Activity class in the framework. Similarly,

the kernel records the name of each thread.
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Figure 3.4: Illustrative example of relationship graph.

3.4.3 How do we construct relationship graph?

To infer the user transaction from the event stream, we construct directed acyclic

graphs based on the relationships between events. Each event entry in the trace is identi-

fied as a node in the graph. Each edge between nodes represents the relationship between

two events.

Listing III.1: Example trace of correlation graph

( I ) USER_INPUT p i d : 0

(EM1) ENQUEUE_MSG p i d : 0 msg_id : 1

(DM1) DEQUEUE_MSG p i d : 0 msg_id : 1

( ST1 ) SUBMIT_ASYNCTASK p i d : 0 t k _ i d : 1

( CT1 ) CONSUME_ASYNCTASK p i d : 1 t k _ i d : 1

(B) SOCK_BLOCK p i d : 1

(R) SOCK_RESUME p i d : 1

(EM2) ENQUEUE_MSG p i d : 1 message_ id : 2

(DM2) DEQUEUE_MSG p i d : 0 message_ id : 2

( INV ) UI_INVALIDATE p i d : 0

(UP) UI_UPDATE p i d : 0

Figure 3.4 illustrates the relationship graph constructed based on the example trace in

Listing III.1. The map between node name and event is also shown in the trace. The logic
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of the trace is shown in Section 3.2.

We identified two types of relationships: causal relationship and temporal ordering.

Causal relationship: Causal relationship indicates the relationship between two ex-

ecution intervals where the earlier interval triggers the latter one, as explained in Sec-

tion 3.3.1. It is represented with edges with solid line in the graph. For example, the

message enqueue event triggers the message dequeue action. In other words, without the

message enqueue operation, the message dequeue operation would not exist. We identified

the following node pairs correlated with causality.

• ENQUEUE_MSG and DEQUEUE_MSG with the same message_id.

• SUBMIT_ASYNCTASK and CONSUME_ASYNCTASK with the same task_id.

• BINDER_PRODUCE or BINDER_REPLY events and BINDER_CONSUME with

the same transaction_id.

• Two nodes created by FORK event: the node representing FORK event on the

parent thread and the node representing the initial execution on the child thread.

• UI_INVALIDATE and its closest UI_UPDATE within the same thread.

Temporal ordering: Temporal ordering between events refers to the relationship be-

tween events within an “atomic” execution interval. It is represented with edges with a

dotted line in the graph. For instance, in the previous example, message 1 is enqueued

while the callback method triggered by the input is executed. Similarly, an asynchronous

task is submitted during the execution of the dequeued message 1.

One major challenge with handling temporal ordering is to determine when to end the

execution interval. This is important because if not correctly determined, all events on the

same thread can connect with each other. As a result, multiple separate user transactions

can be mistakenly grouped to one. To overcome this challenge, we categorize the threads

in Android applications into two types and we use different approaches for each type as
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follows.

• Task-based thread is the most common background thread pattern in Android

framework. These threads consume task in a task queue and block when the queue is

empty. The end of each task indicates the termination of one execution interval for these

threads. For example, the main UI thread in each application is a Looper thread waiting

for incoming messages and processing them. All the events happening when process-

ing one message belong to one execution interval. The same approach applies to Binder

thread and asynchronous task thread which waits for new transactions and new tasks. Note

that for other background threads we don’t instrument explicitly, we use events from the

locking primitives to indicate the producer/consumer of a task queue and infer execution

interval. For example, we did this explicitly with applications using WebKit as explained

in Section 3.4.5.

• Another type of thread in Android is worker thread that is forked for one-time

execution. These threads exit after the work is done. Therefore, inferring the execution

interval is automatically covered by our approach.

Using the methodology above, we can correctly infer separate user transactions when

they overlap. By further extracting the critical paths from UI_INPUT and UI_UPDATE in

each transaction, we can derive the latency of each perceived user transaction. Note that

multiple paths can exist between UI_INPUT and UI_UPDATE. In such cases, we develop

a heuristic to pick the critical path, which works as follows. When there are more than one

incident edge upon one node, we compare the timestamps of all the events that connect to

these edges and pick the path through the latest event as the critical path. As this scenario

only occurs in 3.7% of our total transactions, the accuracy of Panappticon depends little

on the accuracy of the heuristic.
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3.4.4 How do we account for resource?

When doing resource accounting for user transactions, the major research question we

are trying to answer here is what are the reasons for transactions with noticeable delay?

What can the system do to speed them up?

To this end, we analyzed the resource usage on the critical path for each transaction in

two steps. First, we add the resource accounting related kernel events into the correlation

graph to indicate the usage of certain physical resource. In particular, context switch events

represent the thread occupying CPU while blocking on IO or network representing usage

on disk IO or network. In additional to physical resource, we also add synchronization

events into the graph to represent the consumption of virtual resource. For example, a

thread can be blocked on a mutex and wait for other threads to release it. Note that these

events are added to the graph based on temporal correlation.

Second, we analyze the edge on the critical path to understand the reason for its latency.

All edges can be placed into two major categories as shown below.

• The edge that indicates the corresponding thread is running and occupying the pro-

cessor. For example, edges between any events that occur between two context switches.

Latency due to this type of edge depend on processor speed.

• The edge that suggests the corresponding thread is waiting for some resource and

being blocked. We further place different resources in the following categories: (1) physi-

cal resource such as network, IO, and CPU. Waiting for CPU means the thread gets context

switched out when it is still eligible to run. (2) Virtual resource such as locks or a thread

execution. For example, the latency between submission and consumption of an asyn-

chronous task can be because all the worker threads are occupied and therefore blocks the

consumption of the new task. Approaches that shorten these edges vary based on specific
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Figure 3.5: Example trace of submitting an asynchronous task to get work done.

resource.

By following the two steps above, we are able to find the time spent on different types

of edges for each transaction. We then can infer the reasons for long transaction and

propose potential solutions.

3.4.5 Example graphs of common programming models

We now present two example relationship graphs generated based on common pro-

gramming patterns in Android framework. The graph patterns shown in these examples

are also the patterns we detected repetitively in the traces gathered from the wild. The

first example is the graph generated based on application using asynchronous task. The

latter one is generated with application using WebKit to render webpages. Note that our

approach is not limited to these two programming patterns.

AsyncTask: Using AsyncTask is an effective way to maintain the application’s re-

sponsiveness. The example trace of such programming model is shown in Figure 3.5. The

user transaction starts by (1) a button press, which triggers (2) the button press handler in

the application to be enqueued as a message. After (3) the handler gets dequeued, (4) it

submits an AsyncTask to an existing worker thread. During the execution of the worker

thread, (5) the worker thread posts message containing Runnable to update the display to

the main UI’s message queue. Eventually (6) the Runnable gets dequeued and executed,

which leads to the (7) UI invalidate and UI update.
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Figure 3.6: Example trace of application using WebView.

WebView applications: WebView class is a view that renders web pages using We-

bKit. It has been extensively used by application developers. Figure 3.6 shows an example

of a user transaction that loads a webpage the first time after application launches. Note

that for demonstration purpose, all the message enqueue nodes within one execution in-

terval are merged into the prior node. For example, the dequeue of message 1 enqueues

message 2 and hence has an outgoing edge to the dequeue of message 2. After the We-

bViewCore thread dequeues message 2, it (1) forks the rendering thread which prepares

different objects on the webpage for rendering. After the preparation, (2) it enqueues a

message to the WebViewCore thread, which eventually triggers the display to update.

One major challenge we have for WebView related application is that the rendering

thread is a native task-based thread that we do not instrument explicitly. Therefore, to

infer the termination of each execution interval, we leverage the kernel waitqueue locking

primitives. We observed that when the rendering thread does not have a task to work on, it

gets blocked on a waitqueue until some other thread puts a task in the queue and notifies

it again. Accordingly, we use the kernel event indicating blocking on the queue to infer

the end of the execution interval and use the notify event to infer the causal relationship

between producer/consumer threads.
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Table 3.2: List of Events Captured

Type Name Description

Synth app

AsyncApp Starts an AsyncTask after button press and updates the display
WorkerThreadApp Forks a worker thread after button press and updates the display

ServiceApp Starts a remote service, make an IPC call, and updates the display
WebViewApp Loads a webpage using standard Android API

AnimationApp
Starts an AsyncTask while displays the loading animation,

terminates the animation after the task is done

Open source app

CrossWords Loads a cross word game, displays solution based on user inputs
ReadForSpeed Downloads text and displays it based on timer

Android browser The default browser on Android
K9 mail Mail client

NPR news News reading application

3.5 Validation

We now validate that Panappticon correctly identifies user-perceived transactions and

discuss its performance and energy overheads. All experiments are done on Galaxy Nexus

phones running Android 4.1.2.

3.5.1 Accuracy analysis

We examine the accuracy of Panappticon by evaluating the ten applications, five syn-

thetic benchmarks and five open-source applications, listed in Table 3.2. In these tests, we

wish to (1) verify that Panappticon correctly links each UI input to the resulting display

updates and (2) confirm that the extracted relationship graphs are correct.

For the first test, we manually instrumented the applications to measure the latency

between a user input and the resulting display update. Given the source code, we identify

the corresponding method where the application receives and processes users’ input and

where it renders the view to the display. By comparing the timestamp recorded from these

application methods and measured by Panappticon, we concluded that Panappticon cor-

rectly identified and linked the inputs and display updates for all ten applications, reporting
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the correct transaction latency.

For the second test, we compared visualizations of the generated transaction relation-

ship graphs with our understanding of the source code. For example, we knew from study-

ing the source if an application used an asynchronous task or RPC call to perform part

of the transaction. The generated graphs aligned with our expectations, indicating that

Panappticon extracted the correct relationship graphs.

Although Panappticon performs well on our intended workloads, it cannot handle all

applications and behaviors. We describe some of its limitations here.

• Approach limitation: Our approach does not track data or control dependen-

cies directly, but relies on instrumented system or platform libraries that provide support

for high-level programming paradigms like task-queues or semaphores. Applications that

implement their own coordination primitives or use lockless synchronization cannot be

tracked by Panappticon. Tracking data dependencies requires techniques like taint track-

ing [21] that incur overheads not suitable for online use.

Our definition of user-perceived transaction is not directly suitable for animated applica-

tions like games. Our definition tries to capture the time a user spends waiting for an

expected result to the input. But with animated activities, the expected result manifests

over many frames and may be modified by later inputs. As a result, we exclude animated

transactions (like most games) from the experiment, as shown in Section 3.6. Note that

according to a recent study, game applications take up roughly 15% of the total number of

applications [2].

• Instrumentation limitation: Our specific implementation for Android assumes

that background worker threads are task-driven threads. Our instrumentation modifies

the common Android-provided task-driven primitives like the Looper, AsyncTask, and

Executor classes to record the start and end of each task. While this assumption holds true
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Figure 3.7: Overhead evaluation of Panappticon.

for most interactive applications, it can miss work done on native, non-Java background

threads.

One particular example, the WebKit library used to display web pages, is quite prevalent

so we use kernel primitives to infer its task intervals as described in Section 3.4. WebKit is

the only such library we found in our traces, but other less-frequently used libraries might

exist. Panappticon would miss them until the implementation is extended.

3.5.2 Overhead analysis

We now present the performance and energy consumption overhead of Panappticon.

Performance: The performance overhead of Panappticon stems mainly from the CPU

cycles used to log each event and the memory used to store the logs (reducing memory

available for the Linux file cache and Android application cache). The CPU overhead is

minimized by eliminating locking in the logging path (e.g., by using per-CPU log buffers

in the kernel) and memory overhead is minimized by fixing the buffer size to 30 MB in the

kernel and 15 MB in userspace.
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To evaluate the overhead, we compared user transaction latencies on a system with

Panappticon to one without. To get latencies on the system without, we manually instru-

mented several open source applications to directly record transaction lengths. The ex-

periment was conducted on two Galaxy Nexus phones. Shown in Figure 3.7, the average

overhead of Panappticon is 6.1%.

Battery: The energy consumption of Panappticon is mainly due to uploading the logs

to our server. This cost is reduced by transferring data only when WiFi is available. When

not available, Panappticon saves the data to flash and defers the transmission. The saved

data is not sent until the phone is charging and WiFi is available. No users reported a

noticeable change in battery life.

3.6 Case studies from real-world traces

We now present the result from our deployment of Panappticon in the wild. We first

explain the setup of the deployment and then proceed through three case studies on the

real-world traces, showing three specific findings uncovered by Panappticon that would

interest application developers, system designers, and smartphone manufacturers.

3.6.1 Experimental setup

We recruited 14 students from University of Michigan as volunteer users to deploy

Panappticon. We selected users based on one major criteria—that they are regular, long-

time smartphone users—to ensure that their user behavior is representative of smartphone

users. All users used Galaxy Nexus phones [5], which has a 1.2 GHz dual-core processor.

The deployment has two major goals. (1) Identify the bottlenecks responsible for trans-

actions of noticeable length (i.e., >50–100 ms). This goal can be achieved by looking at

the resource usage for each transaction. (2) Understand the impact of architectural differ-

ences on user transactions, e.g., multi-core devices compared with single-core device and
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Table 3.3: Deployment Statistics
Total num of transactions 104,588

Transactions without animation 88,656
Animation transactions 15,932

Application count 189
Start time Oct. 31th
End time Nov. 30th
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Figure 3.8: Distribution of all non-animation transactions.

the impact of the DVFS (Dynamic Voltage and Frequency Scaling) policy. To achieve this,

we periodically disable one core on the device and toggle the DVFS settings. Specifically,

we run a daemon that changes the number of cores and DVFS policy every 10 minutes,

randomly switching between the four possible configurations. To prevent the transition

from interfering with user experience when intensive workload is running, the switching

transition only happens when the system is not busy (i.e., with CPU utilization less than

5%).

Table 3.3 summarizes the basic statistics of the deployment. We detected 104,588

transactions in total. Among them, 88,656 transactions do not have involve animation.

Figure 3.8 presents the cumulative distribution of latencies for all user transactions. Trans-

actions without animation last at most 38.60 seconds with only 2% of transactions last-

ing longer than 1 second. Note that as explained in Section 3.5, we only focus on non-

animation transactions in the next subsection because the length of animation transactions

does not directly correlate with user experience.
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Figure 3.9: Perceived user transaction list detected by Panappticon.

Figure 3.10: Example trace of events on critical path for one transaction.

3.6.2 How to use Panappticon to understand performance inefficiency

Panappticon intends to help developers to identify performance inefficiencies in mobile

system and applications. To achieve this, Panappticon provides the following information

to developers, guiding them to understand the causes of the latency for each user transac-

tion.

• User transaction list sorted by latency. The latency is also broken down by dif-

ferent causes. Figure 3.9 shows an example of the list. It makes it easy for developers
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to understand which user transaction should be focused on, e.g., the frequent transactions

with noticeable latency, and also what reason contributes most to the transaction latency.

• Event list on critical paths for each transaction. Figure 3.10 shows the example

critical paths for one transaction. This piece of information helps developers to know

what happens within each transaction in great detail, allowing them to better understand

what is the bottleneck for performance inefficiency.

• All events happens during each transaction. This information is also useful as

sometimes events that are not on critical paths can also influence the performance of one

transaction via resource contention. The format of this event list is the same as the event

list of critical paths as shown above.

With these information provided, developers could first identify frequent transactions

with noticeable latency, and then explore the dominant reason for its latency by looking

at the event list on critical paths. For example, to identify inefficient applications, we first

looked at the sorted user transaction list and observed that the Reddit News application

had many frequent transactions with noticeable latency. We then extracted the critical path

information associated with these transactions and found the events that took a significant

percentage of the total transaction latency. The following subsection discusses our findings

for this application.

3.6.3 Case Study One: Analysis of long transactions for applications

One major goal of Panappticon is to help application developers identify user transac-

tions that may be noticeably and annoyingly long and help expose potential fixes. We now

describe how Panappticon identified a performance inefficiency in Reddit News, a popular

application for browsing the website reddit.com.

Reddit News is a popular closed-source application on the Android Market that has
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Figure 3.11: (Color) Transaction trace for Reddit News showing the main thread contend-
ing for the CPU with system-owned threads used to control the emulated SD
card. For the Reddit News thread, time spent using the CPU is shown in
green and time waiting for the CPU is in red. Waiting until after the display
is updated to cache the downloaded data to the SD card would reduce this
contention and shorten the user-perceived transaction latency.

Table 3.4: Resource Accounting Statistics for Sample Transactions from Reddit News

Total latency(s) Network block(s) IO block(s)
Waiting

for CPU(s)
3.78 0.98 0 1.39
2.35 0.42 0.02 0.93
1.54 0.23 0 0.89
1.27 0.15 0 0.33

millions of downloads. When doing transaction analysis, Panappticon revealed a large

number of transactions with latencies longer then 1 second. Table 3.4 shows the resource

accounting statistics generated from Panappticon for four example transactions. “Net-

work” and “IO” block columns show the time spent blocked by those resources on the

critical path. “Waiting for CPU” shows the time spent waiting for the CPU while pre-

empted. The rest of the transaction is spent running on CPU.

The tables shows the time spent in preemption is the dominant reason for the high la-

tency and suggests heavy CPU contention during the transactions. Interestingly, a deeper

look at the critical paths of these transactions reveals two things: (1) the preempting

threads that consume the most CPU time during these transactions are the system threads

responsible for writing to the emulated SD card. (2) The preemption is triggered by the

Reddit News thread after each network block. Longer network blocks trigger longer pre-

emption times. Figure 3.11 shows one such transaction trace and the CPU usage from the
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contending system thread. We believe the Reddit News thread is fetching images from the

network and caching them to disk right after download.

Although saving to the SD card does not block the thread directly via disk IO block,

the system thread in charge of SD card writing creates heavy CPU contention and blocks

the thread on the critical path. Now the remaining question is why the thread writing to

SD card starts working during a user transaction. A deeper investigation into the writing

policy reveals that although the write back activity happens asynchronously with the write

system call, it gets triggered everytime the write buffer gets full. In the Reddit News

scenario, each image ranges from 15KB to 3MB while the default buffer size is 8KB. This

means that every time an image is downloaded, the SD card thread would be triggered to

write it back to SD card and as a result creates the resource contention with the critical

path. As we don’t have access to the source code of SD card driver, we hypothesize the

intensive CPU load being the deficiencies in the driver resulting from wear leveling, the

technique that is used to remap blocks to spread write between sectors to reduce SD card

wear out. This performance inefficiency induced by SD card is also reported similarly

by [35].

There are two potential solutions that can resolve such contention and reduce user-

perceived latency. The first solution is to fix the inefficiency in the driver code. This

solution fixes the fundamental problem, however, it is beyond many developers. The sec-

ond solution is that the application developers should defer the image caching after it being

displayed to the user or use a larger buffer size.

In addition to the preemption latency, latency due to network also contributes to the

long transactions. This suggests that the developers should consider a prefetching or

caching policy depending on the specific usage scenario.
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Figure 3.12: Distributions of user transaction latency for different core count and DVFS
configurations. The zoomed-in inset plot highlights the differences in the
upper percentiles.

3.6.4 Case Study Two: Impact of DVFS policy on user transaction latency

The second case study illustrates how Panappticon can help system designers by study-

ing the impact on user transaction length of a specific system setting, the dynamic voltage

and frequency scaling (DVFS) policy. DVFS is used to improve energy efficiency by de-

creasing the processor voltage and frequency to the most energy-efficient point that still

provides the needed throughput. This strategy is a problem for latency-sensitive tasks

that are often low-throughput and thus do not trigger the faster processor states. Android

ships with a DVFS policy, interactive, that attempts to improve performance for latency-

sensitive, interactive workloads, but as we show in this section, only partially succeeds.

Figure 3.12 shows the empirical distribution of user transaction latencies for four dif-

ferent CPU configurations, DVFS on (using the iteractive governor) and off (using the

highest frequency, 1.2 GHz) with both one and two cores available. We observe that for

both dual and single core configurations, user transaction latencies are higher with DVFS

enabled. For short transactions below 20 ms or so, the difference is probably unnoticeable,

but the differences are significant at higher latencies. For example, the difference at the
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96th percentile is 170 ms for the dual core configurations and 517 ms at the 98th percentile

for the single core configurations. These observations indicate that DVFS negatively and

noticeably impacts user transaction latency.

To understand why this behavior occurs, we examine the details of the DVFS pol-

icy. The iteractive governor uses a standard windowed-utilization policy to set the CPU

state—the frequency is matched to the CPU utilization over the preceding 20 ms—but in-

cludes three optimizations for latency-sensitive tasks. First, the CPU speed is boosted (to

700 MHz) on each user input (touchscreen or keyboard). Second, the CPU speed is boosted

(to 700 MHz) if the CPU utilization exceeds some threshhold (85%) over the short dura-

tion (20 ms) after leaving idle, bypassing any intermediate states. Third, the CPU is held

at a frequency for a minimum duration (60 ms) before it may be lowered (it may increased

with no delay). From this explanation, we hypothesize that short transactions are slower

because the CPU speed is initially boosted to only 700 MHz, not the full 1.2 GHz, and

longer transactions are slower because the CPU speed is allowed to drop after 60 ms.

A QQ plot comparing the latency distributions for a single core configuration (Fig-

ure 3.13) supports this hypothesis. Below 60 ms, the distributions are essentially the same,

with DVFS off being slightly faster below 10 ms. Above 60 ms however, DVFS is much

worse. Latencies average 1.75× higher for transactions above 100 ms. As illustrated in

Figure 3.14, most long transactions include network and disk blocking interleaved with

the CPU usage and thus despite using the CPU for relatively long (e.g., 1 second), do not

exhibit high CPU utilization. After 60 ms, interactive allows the CPU speed to drop to

match the utilization and the remaining processing is done at a lower speed, increasing

the transaction latency. For interactive workloads with network and disk blocking, CPU

utilization is a poor measure for controlling the frequency.

Given the preceding observations, we offer two suggestions for improving the DVFS
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Figure 3.13: QQ plot comparing latency distributions with DVFS on and off for a single
core. For transactions with latencies below 60 ms, DVFS has little impact, but
for longer transactions, DVFS hurts latency by as much as 1.75×. The break
occurs at 60–80 ms because the interactive governor allows the frequency to
drop 60 ms after the user input.

policy for interactive workloads. The first is simple—increase the minimum duration after

user input before allowing the frequency to drop. This requires no changes to code (the

duration is already configurable) but would have some unnecessary impact on energy con-

sumption, since the majority of transactions are shorter than the current 60 ms threshold.

The second, while more sophisticated, is only a high-level suggestion. Treat the time spent

blocking on network or disk as time on the CPU. This renders the CPU utilization (and

thus frequency) independent of the time spent blocking, keeping the frequency high when

the task is in-progress and allowing it to drop on task completion. Of course, the devil is

in the details (e.g., false positives due to web socket threads blocked indefinitely waiting

for updates from a server) and since the focus of this chapter is using Panappticon to il-

luminate problems, not develop new DVFS policies, we leave further evaluation to future

work.
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Table 3.5: Power and Energy Consumption for Different Frequency Levels for Galaxy
Nexus
Frequency CPU Power (mW) Total Power (mW) Estimated energy

350 220 820 2.64
700 610 1260 1.46
920 1000 1650 1.16
1200 1600 2260 1

Some may argue that DVFS policy intends to trade performance for energy consump-

tion. Therefore, the energy benefit can overweigh performance degradation induced by

DVFS policy. However, our measurement result shows when considering the whole sys-

tem’s energy consumption, improving the performance of the system also leads to better

energy efficiency due to the energy consumed by system peripherals other than the pro-

cessor. Table 3.5 shows the measured power consumption of Galaxy Nexus on different

frequency levels. Note that these data are gathered using a power meter attaching to the

phone when it runs synthetic workload keeping the CPU 100% utilized with different fre-

quency levels. To understand the effect of DVFS policy, take CPU-bounded workload for

example. The performance of such task is inversely correlated with the frequency of the

processor. When considering the CPU energy consumption alone, the energy efficiency

increases with decreasing frequency level. However, when we consider energy consump-

tion of the whole platform, the energy efficiency decreases with decreasing frequency

level. Table 3.5 indicates that enabling DVFS policy does not necessarily lead to better

energy efficiency. Although it benefits the total energy consumption when the workload

is IO-bounded or memory-bounded, when the workload is CPU-bounded as most gaming

applications are, DVFS policy would hurt the total energy consumption.

3.6.5 Case Study Three: Impact of hardware resource on user transactions

The third and final case study shows how Panappticon can be used by hardware and

platform designers to study the impacts of hardware design choices on user transactions.
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Figure 3.14: transaction illustrating the reason for the poor behavior of the DVFS policy.
The CPU use is interleaved with disk blocks and thus although the transaction
includes significant CPU time, the utilization is low and the DVFS policy
keeps the CPU frequency well below the max.

To this end, we explore one major question: how do multicore processor influence the

latency of user transactions?

How are additional cores used?

To answer the question, we compare the distribution of user transaction latencies for

single core and dual core configurations. To eliminate the effect of DVFS, we consider

only the configurations with DVFS disabled. As shown in Figure 3.12, for short transac-

tions below 2 ms, an additional core reduces transaction time. However, for longer transac-

tions, the additional core does not significantly change transaction time, on average. This

suggests that longer transactions are not parallelized, CPU-bound workloads2.

This finding indicates that developers are not writing parallel (non-gaming) applica-

2N.B., we do not consider applications using OpenGL, like games. The multicore behavior for such
applications may be different.
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tions, even when the transactions latencies are high enough to justify it. Although the

applications use multiple threads, usually only a single thread is active. Determining if the

applications are parallelizable is beyond the scope of Panappticon, but we can offer two

suggestions.

First, Panappticon can identify applications with slow, CPU-bound, and non-parallelized

execution. Developers of these applications should consider trying to parallelize them.

With Panappticon, it is easy to focus on the sections that would provide the most benefit if

parallelized.

Second, hardware manufacturers should continue to optimize for single-threaded exe-

cution. Many are already doing this, for example, allowing additional cores to be turned off

when not in used, providing a single core that operates at a slower, more energy-efficient

speed, or providing a single core that operates at higher speed when the others are turned

off. Panappticon shows that these features are still suitable for many real user transactions

and could be used to quantify their impact.

3.7 Summary

In this chapter, we described Panappticon, a system that records events generated in

operating system and framework libraries, correlates related events and extracts individual

perceived user transaction. Panappticon is able to identify the duration and the critical path

of each transaction and disclose performance bottlenecks in each transaction.

This chapter shows that by providing the user transaction information, Panappticon can

benefit application developers, system developers, and smartphone manufactures. Panapp-

ticon can help application developers identify application design inefficiency, even when

the root cause is subtle. Panappticon can help system developers understand the impact of

system policy on user transactions, e.g., DVFS policy. This knowledge would enable them
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to better optimize their designs. In the end, Panappticon also helps smartphone manufac-

tures to understand the impact of architectural decisions on user transactions, e.g., impact

of additional core. This information can guide future design decisions.



CHAPTER IV

ADEL: Automatic Detector of Energy Leaks for
Smartphone Applications

4.1 Introduction

Energy is a scarce resource for smartphone users. Available energy is constrained by

limits on battery size and weight, and improvements in battery technology have histori-

cally been slow. Moreover, energy demands often increase with the addition of new hard-

ware and software features. To make matters worse, operating systems and applications

frequently consume energy to perform tasks that are ultimately useless, a phenomenon

we call energy leaks. Smartphone users commonly complain about the effects of energy

leaks. For example, many iPhone users reported a sudden drop in battery life from 100

hours standby to 6 hours standby due to new energy leaks in Apple’s iOS 5.

Energy leaks are in general difficult to detect and isolate [43]. There are two main

reasons for this difficulty. First, it is much more difficult to determine how much energy

an application leaks than to determine how much energy it uses. Some applications neces-

sarily consume a lot of energy while wasting little (e.g., YouTube). Second, there can be

a wide range of causes for unintended energy use, e.g., incorrect API use or poor applica-

tion design. As we will demonstrate in Section 4.6, even mature and carefully developed

operating systems or applications can contain energy leaks.

88
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Energy leaks are tasks that consume energy without ever directly or indirectly influ-

encing the user-observable output of the smartphone. More specifically, if removing a task

from the application never directly or indirectly changes any output presented to users,

the task is unnecessary, and the energy consumed by it is wasted. We consider energy

leaks resulting from two sources. The first source is unambiguous programming errors,

e.g., frequently accessing sensor data without using it. The second source is application

designs that rely on predictions that are too inaccurate for their intended purposes, as can

happen with applications that use overly aggressive prefetching. In addition to identifying

unambiguous energy bugs, our work can also determine the percent of energy wasted as

a result of prefetching misprediction and identify the particular prefetched data elements

that are not ultimately used, thereby supporting improvements to predictors or adaptation

of prefetching aggressiveness.

We focus here on detecting and isolating energy leaks in network communication for

mobile applications. We choose to focus on network communication because network-

intensive applications are very common in smartphones, network communication, includ-

ing both Wi-Fi and 3G interace, accounts for 39% of system-wide energy consumption,

and (most importantly) developers have a hard time optimizing for network energy effi-

ciency, resulting in substantial energy waste [45]. More specifically, we provide a tool that

detects useless network packets which directly leads to energy leak.

We describe the design, implementation, and evaluation of ADEL (Automatic De-

tector of Energy Leaks). ADEL is an extension of the Android platform that tracks the

information flow of network traffic through applications. By tracking all the computa-

tions that depend on each network packet, ADEL is able to determine whether or not a

packet constitutes an energy leak, e.g., whether it is deleted before directly or indirectly

influencing outputs. ADEL uses dynamic taint-tracking analysis to detect energy leaks. It
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automatically labels each data object with a tag when it is first downloaded, then follows

and propagates the tag when new data objects are derived from the tainted object. Thus,

system outputs can be associated with the downloaded data that influenced them. ADEL

provides developers with insight on the use of each packet, allowing design flaws resulting

in energy waste to be easily detected and isolated.

We evaluated the effectiveness of ADEL by profiling five open source applications

and three closed source applications. For the open source applications, we compared

the ADEL-detected wasted network communication with our understanding of logic in

the source code. For the closed source applications, we manually correlated the detected

tainted object with the content being displayed.

Our ADEL-supported analysis of 15 applications revealed four categories of energy

leaks:

1. Misinterpretation of callback APIs that results in wasteful downloads. For ex-

ample, an application containing a separate downloading thread might not kill the thread

properly, allowing the download to continue after the application exits the foreground.

2. Inefficient data refreshing behavior that ignores the application and device status.

For example, a widget might be updated whether or not the display is currently on.

3. Repetitive downloads. For example, an application might download repetitive

content because it fails to cache downloaded content.

4. Overly aggressive prefetching.

Eliminating or reducing energy leaks of these kinds in our test suite reduces the net-

work energy consumption by approximately 50%. In summary, ADEL effectively helps

identify and isolate communication energy leaks.

This work makes the following contributions.

• We provide a definition of energy leaks: the energy consumed in operations that
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never influences any output produced by a system.

• We describe ADEL, a system-wide infrastructure that uses dynamic taint-tracking

to identify network energy leaks. ADEL tracks data originating at the network interface

through applications to its eventual use or deletion. Automatically determining whether

particular network data are ever used can help applications developers and users to identify,

isolate, and fix energy leaks. ADEL is the first system that uses taint-tracking for energy

efficiency analysis.

• We used ADEL to profile 15 applications. Six of these have energy leaks that

account for more than 40% of their communication energy use. By further examining

these leaky applications, we identified four common causes. Our analysis may be useful

for both application and platform developers.

The rest of this chapter is organized as follows. Section 4.2 formally defines energy

leak and defines the problem ADEL seeks to solve. Section 4.3 describes an illustrative

example of ADEL’s use and explains its design challenges. Section 4.4 describes the

implementation of ADEL in detail. Section 4.5 explains how ADEL is validated and points

out its limitations. Section 4.6 describes our analysis of energy leaks in 15 applications

and indicates major classes of design characteristics resulting in energy leaks. Section 4.7

concludes the chapter.

4.2 Problem Definition

We define an energy leak as energy consumed that does not ever influence the outputs

of a computer system, e.g., through display interface, audio interface or network interface.

In other words, any energy consumed by operations that never change system outputs,

directly or indirectly, is wasted. Eliminating such operations cannot cause observable

changes in application behavior. For example, the widget of a news application might
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frequently update the latest news regardless of whether it is currently visible to the users,

e.g., whether the display is even on or off. From the user’s perspective, these downloads

are not only useless, but also generate energy leaks. Eliminating these extra downloads

(e.g., by only downloading when the widget is visible to users) will not influence the

user’s experience.

Our Automatic Detector of Energy Leaks (ADEL) system detects smartphone applica-

tion energy leaks due to network downloads by tracking network data in order to determine

which downloads ever have user-observable effects. We focus on network downloads for

two main reasons. First, network devices, including 802.11 card and cellular devices,

are power-hungry; the two devices together consume 39% of the total energy. Note that

this is estimated by aggregating 137 PowerTutor users’ over a months’ traces [44]. Sec-

ond, application developers have an especially difficult time optimizing applications for

network energy efficiency due to the complicated power characteristics of the network in-

terface [45]. As a result, a significant amount of energy is wasted due to application’s

network communication [45].

The definition of energy leak is a general definition. In practice, it would be difficult to

track accurately as discussed in Section 4.5.1. However, we believe it is the perfect goal

to aim at.

4.3 Illustrative Example and Design Challenges

We designed and implemented a system supporting on-line analysis of downloaded

data objects use. We anticipate that this work will be most useful to developers attempting

to improve the energy efficiency of their applications. In this section, we will first give a

simple example to illustrate the use of our infrastructure. We will then discuss its design

challenges.
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Figure 4.1: Crosswords game is with two major threads: downloading and user interface.
Packets associated with tags pass through the application flow. Eventual use
depends on user inputs.

4.3.1 Illustrative example

Imagine a game that downloads crosswords puzzles and displays them to the users. As

shown in Figure 4.1, the application contains two major threads: one in charge of down-

loading puzzles from the Internet and one in charge of the user interface (UI) including

showing the game and taking user inputs. The downloading thread receives network pack-

ets that contain the layout of grid for each game, the hints to each word, and the solution

to each game. It then parses the contents of different packets and passes them as messages

to the UI thread. The UI thread first displays the grid based on the message passed from

the downloading thread. Then it displays hints if the user clicks on the corresponding grid.

When the user finishes and submits the game, it shows the solution of the game.

To track the usage of the downloaded data objects for the crosswords game, the system
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first identifies them in the network interface where a tag is associated with each object at

the packet-level. These network interfaces are denoted as the taint source and the down-

loaded objects are tainted objects. As shown in Figure 4.1, each type of data objects is

associated with a unique tag, assuming they come in separate packets. During the propaga-

tion of the tainted object, the system passes down the tag when one data object is derived

from a tainted one. The shaded area represents the functions the tainted objects passing

through. Finally when tainted objects reaches the taint sink, in this specific example, the

display, they are detected and the tags representing the original downloaded data objects

are recorded.

4.3.2 Design challenges

When designing a system to track the use of data objects, we were faced with the

following challenges.

• Downloaded data objects are not necessarily used immediately. In the above ex-

ample, the hints and solution of each game may be stored in memory for a long time

before users reveal their inputs. This lack of temporal correlation between downloaded

and eventually used rules out the possibility of some alternative approaches. For example,

tracking data usage by first monitoring both the network and display interface simultane-

ously, then comparing downloaded content and displayed content is infeasible due to no

temporal correlation. As a result, the monitoring system must be able to trace data objects

through memory until they are used or deleted.

• Data objects can be parsed or processed before they are displayed. For example,

the grid color can be received as strings in an XML file when it is first downloaded. Yet

when it reaches the display, the string itself will not be displayed. Instead, it will influence

the color of the output grid. Transitive derivatives of downloaded data must be considered.
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• The use of data objects depends on the dynamic environment of the application,

e.g., user behavior. As shown in Figure 4.1, the use of hints and solutions to the game de-

pend on user behavior. As a result, static analysis of application source code is insufficient

to fully understand the application’s real-world data use. Therefore, we focus on dynamic

analysis.

• It is necessary to identify the original data object when a derivative is displayed.

Our goal is to help developers to (1) understand the use of each downloaded data object

and (2) identify potential bugs in their code resulting in unnecessary data transmission.

Therefore, it is necessary to trace downloaded data objects and their derivatives for their

entire lifespans so that if they are ultimately displayed, we will be able to identify the

original downloaded data objects. To achieve this, the system needs to associate a unique

ID with each data object and have the ID propagated to all its derivatives. We associate

unique IDs with each downloaded object and track the IDs through derivative objects.

• Mobile devices are resource constrained. Limits on smartphone CPU speed, mem-

ory size, and energy capacity makes high-overhead techniques such as instruction-level

taint tracking [53] less practical than lower-overhead techniques.

4.4 System Architecture of ADEL

The challenges described in the previous section motivate us to use dynamic taint track-

ing analysis of downloaded data objects. The closest existing implementation we found is

TaintDroid [22], an extended Android platform for improving security by identifying the

flow of private information. This section first presents background information on Android

that is necessary to understand ADEL, our taint tracking infrastructure. It then provides an

overview of the ADEL system architecture. Finally, we explain each component of ADEL

individually in detail.
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4.4.1 Background: Android

Android is a Linux-based operating system for mobile devices such as smartphone

and tablets developed by Google. It differs from a standard Linux distribution due to

an additional layer of abstraction between user applications and library, the application

framework layer. The four major differences between Android and standard Linux follow.

Dalvik virtual machine, Java Native Interface (JNI), and native interface: Android

is composed of a modified Linux kernel written and compiled to native machine code, with

middleware, libraries and APIs written in both Java and native code. Although develop-

ment of applications using native machine code is allowed, most Android applications are

written in Java.

Each Java application is compiled to bytecode and runs in the Dalvik virtual machine

(DVM) and each DVM instance contains only one application. The Dalvik VM has its

own instruction set. An interpreter converts Java bytecode into Dalvik code at run time.

ADEL consists of taint tracking code inserted into the interpreter.

There are two types of native methods that could potentially be accessed by applica-

tions in Android: (1) native methods in the Android framework or system library such

as WebKit or SQLite and (2) the native methods stored in shared object in the applica-

tion package. All native methods accessed from a Java-based application must be called

through JNI methods. Application packages containing native methods account for 5%

of applications according to a survey of the Android market [?] and handling taint track-

ing through native code would substantially complicate the taint tracking infrastructure.

Therefore, ADEL does not cover application-specific native methods in the taint track-

ing flow. Note, however, that it can do information flow tracking in the Java portions of

applications that contain certain framework JNI methods.

Binder: Binder is a specially customized kernel mechanism for Android to do Inter
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Process Communication (IPC). In the core of binder, processes serialize the data message

and pass between processes using parcel.

Shared memory: Share memory region in Android framework allows sharing between

different processes. Note that reference counting in shared memory region is required in

Android so that the shared region will not be removed until all processes have released it.

Zygote process: Zygote is the first application process loaded on top of the Dalvik

VM when the system boots. It maintains memory regions that are shared by multiple

applications and spawns all other Android applications by doing a regular fork().

4.4.2 Architecture Overview

We now provide an overview of the ADEL system architecture. ADEL provides on-

line monitoring of the use of downloaded objects by applications. It uses dynamic taint

tracking to follow the information flow during the entire lifespan of the downloaded object,

from download until direct or transitive use. As shown in Figure 4.2, the taint flow can be

decomposed into three phases: taint source, taint propagation, and taint sink.

Taint source: We identify the network interface as a taint source. We detect all down-

loaded data objects and associate a unique tag with each data object at packet-level. Each

tag is a 32-bit integer that indirectly indicates (indexes) the size of packet. Note that packet

size is needed to determine the number of bytes of network transmission that associated
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with energy leaks. A hash table is used to map tags to packet sizes. The table is kept in

shared memory region and maintained by Zygote. To store tags, we instrument the Dalvik

VM to change the memory allocation and Java class data structures in order to store an in-

dexing tag adjacent to its corresponding data object, with additional information indexed

by the tag.

Taint propagation: During taint propagation, tags are propagated to new variables

when they are derived from tainted variables. Taint propagation happens at four different

levels: variable-level, method-level, file-level and message-level, corresponding to four

different sources where tag is propagated: interpreted code, JNI and native code, persis-

tent storage, and IPC. For interpreted code, an alternative design is instruction-level taint

tracking [53]. However, this fine-grained approach induces up to 20× performance over-

head for workstations and therefore is contradicted for our resource constrained mobile

platform. For JNI and native code, the system retrieves the tags of the inputs of the in-

voked methods and propagates them to the return value. This heuristic is used to prevent

the overhead of monitoring native code. For persistent storage, each file is associated with

a tag. Any write of the tainted data will taint the tag of the file and any data read from

the file will be tainted with the same tag. Finally for IPC propagation, we associate a tag

with the message passed between processes. Having file-level and message-level propaga-

tion indicates potential false positive in the result, yet it also covers many real scenarios.

Overall, by propagating the tag at multiple levels, we are able to achieve system-wide taint

tracking.

Taint sink: At taint sink, we identify the output of tainted data from the application.

Every time a tainted object is detected, we track down and log the original downloaded

object(s) that influenced the tainted object by its tag. Mobile computers may have multiple

output device, e.g., video and audio displays. Currently ADEL only supports the video
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Figure 4.3: Taint tags are stored adjacent to their data objects in both stack and heap.

display interface taint sink, as it was used for displaying the most network-tainted data

in the applications we are aware of. However, the approach could be easily extended to

handle other output devices.

4.4.3 Implementation

We implemented ADEL on top of TaintDroid [22] with 2,414 lines of code modifi-

cations. The adaptation of this infrastructure for use in energy leak detection required

changes to taint tag representation, taint propagation rules, taint source, and taint sink.

Tag storage
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Figure 4.3 shows how ADEL stores taint tags in the Dalvik VM. Tags are associated

with five types of data: local variables in method, method arguments, method return value,

class static fields, and class instance fields. For local variables, method arguments and

return values, whenever each new method is invoked, a new stack frame containing these

data objects will be constructed. To store their tags, the size of stack frame is doubled.

This allows us to store an additional 32-bit tag for each data object. As tags need to be

retrieved whenever the corresponding data object is operated upon, they are stored adjacent

to their corresponding data objects to allow efficient retrieval. As shown in Figure 4.3, the

shaded area represents the patched memory for tags. For class static fields and instance

fields stored in the heap, extra memory is used as well. The data structure of static field

is modified to include a taint tag field while each instance field is extended by adding a

32-bit tag space adjacent to it. In the case of arrays and strings, only one tag is associated

with the whole class object. That is to say, any value coming out of a tainted array or

string is tainted. This decision was made to avoid the overhead of having multiple tags,

each associating with one data element.

Tag representation and propagation logic

In order to identify whether there are energy leaks and what causes them, we need to

track the flow of each network packet and record the contribution of tainted variables to

each newly derived variable. In this case, ADEL can work backwards to determine for

each packet whether it ultimately influences content displayed. One common solution in

security research is to use each bit to represent one unique type of tainted variable and

use OR operation on merging variables. Unfortunately, this solution only allows tracking

for 32 different types of variables. In our case, each new packet represents a new tainted

variable that needs to be uniquely identified. As a result, the prior solution is unable to

achieve our goal.
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Figure 4.4: Example of correct taint tag propagation.
Algorithm 1 Copy taint tag
Require: SrcTag

1: Increase the ref_count of SrcTag
2: DestTag⇐ SrcTag
3: return DestTag

To overcome this problem, instead of having one bit in the tag representing a unique

type of tainted variable, we have each tag representing a set of packets that have been used

to derive the corresponding variable as shown in Figure 4.4. Each packet is represented

by a unique ID, packet tag. Every time a new variable is derived from multiple tainted

variables, the union of all sets is taken to derive the new tag.

We use two hash tables in ADEL. One maps packet tag, the packet ID, to packet size.

The other maps tag to the set of packet tag as shown below.

map< i n t p a c k e t _ t a g , i n t s i z e >packet_map ;

map< i n t t ag , s e t < i n t p a c k e t _ t a g > >tag_map ;

A new tag is generated if any of the following conditions holds: (1) a new data object

is downloaded or (2) a new variable is derived from more than one tainted variable. The

allocation of a new tag is controlled by a unique sequence number. Note that these two

maps are global data structures containing all the tags for any application. Consequently,

we place them in shared memory and modify Zygote to maintain the insertion of new tags

and propagation of existing tags.

Taint tags are propagated using the following rules.

• Copy taint tag: When only one tainted object is used to derive a new variable, e.g.
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Algorithm 2 Merge taint tag
Require: Src1Tag, Src2Tag, tag_map

{Update an old tag or merge to create a new one}
1: if any of Src1Tag or Src2Tag has only one reference count then
2: DestTag⇐ the one in Src1Tag and Src2Tag that has one tag
3: update the set of DestTag by inserting the set of the other source tag
4: increase the ref_count of DestTag
5: else
6: DestTag⇐ a newly created tag
7: new_set⇐ union of sets of both Src1Tag and Src2Tag
8: insert (DestTag, new_set) into tag_map
9: initialize ref_count of DestTag

10: end if
11: return DestTag

move and unary instruction, we copy the taint tag to the newly derived variable so that

both variables are derived from the identical set of packet tags. Meanwhile, each tag is

associated with a reference counter to record the number of variables associated with that

tag. Note that reference counting is needed for copy-on-write when merging taint tags.

Algorithm 1 shows the flow of the logic.

• Merge taint tags: When more than one tainted object is used to derive a new vari-

able, merge taint tags must take the union of the sets. This is required for any binary

instruction, e.g., add. As shown in Algorithm 2, copy-on-write is used to reduce memory

overhead. A new tag and set are only constructed if both of the source variable’s tag have

multiple references.

Tag sources and sinks

To determine the percentage of energy leak, ADEL needs to track the network packet

from downloaded until display. Therefore, we identify the network interface as the taint

source and video display interface as the taint sink. Because taint tags are stored only in

the interpreted code as explained in Section 4.4.3, we choose to modify the Java system

library before the JNI methods are invoked.

We instrument the receive function in the network Java library to implement network
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taint sources. The granularity of tag association determines the trade off between tracking

accuracy and memory overhead. Packet-level tracking is chosen over byte-level tracking

to control overhead while maintaining a tolerable accuracy. Unfortunately, this granu-

larity of tracking introduces false positives in the estimation of useful bytes and results

in an underestimate in the percentage of energy leaked. Yet fortunately, despite of this,

we still identify a significant amount of energy leaks in real applications as explained in

Section 4.6.

Display interface is instrumented as the taint sink to detect tainted data objects. In taint

sink, we identify and log tainted objects when they are rendered to the display. By tracking

the tainted objects through the corresponding set of packet tags, we could determine the

original network packets that get displayed and determine which are useless. Android

provides application developers to render the display in miscellaneous ways including

various of View object and 2D drawables. These different Java library APIs eventually link

to the third-party graphic libraries for rendering, e.g., Skia and WebKit. By performing a

survey of the network intensive applications in Android Market, we determine that Canvas

class in graphic interface and LoadListener in Webkit are the two most frequent APIs for

eventual rendering use by other graphics display APIs. We therefore use these two APIs

as taint sinks in ADEL. Note that WebKit is a complicated rendering engine in which

data objects get passed between native methods and Java methods before they eventually

get displayed. Our Dalvik-based taint tracking framework cannot trace through native

methods. We instead use the following heuristic to approximate taint tracking through

native graphics display routines: we assume that data objects being passed to the native

WebKit rendering engine will be displayed. We have not found contradictory examples

in the applications we examined; please note that perfect accuracy is not necessary for to

achieve our goal of identifying and isolating energy leaks.
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Table 4.1: Applications for Validation
Application Functionality

Open
source

Real-
world
apps

Crossword
A game application that downloads

crossword from multiple online sources
Read for An application that downloads book and

speed display it word by word for speed reading
Umich A map-based application that

Busmap shows the incoming buses for all bus stops

Photostream
A sample application that downloads

and displays picture from Flikr
Syn. app

Taint test
A self-written application that downloads

and displays specific webpages
Closed ABC, Stock

quote, and CNN
Refer to the Android Market

source

Tag propagation

Taint tags are propagated through four paths: interpreted code, JNI and native code,

persistent storage and IPC.

To track through interpreted code, we modify the interpreter in Dalvik VM to realize

the propagation logic. There are two alternative interpreters in the VM, one implemented

in native code and the other implemented in assembly code. Dalvik VM can load either.

The first works on any phone supporting native code; the second only works on the few

phone models it has been customized for. The assembly-based interpreter provides higher

performance. ADEL is built on the native code interpreter, i.e., it is general but there are

opportunities for further improvements in performance, an issue discussed in more detail

in Section 4.5.

JNI and native code taint tag propagation is handled by manually instrumenting meth-

ods on demand. This is mainly because all taint tags are stored in the interpreted code stack

and therefore once a native method is invoked, the tags cannot be accessed any more. To

handle taint propagation through native code, we instrument code to guarantee one post-

condition: if the arguments accessed are tainted, the return value of native methods is
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associated with the new tag that follows the propagation logic.

Persistent storage taint tag propagation is handled by associating each file with one

taint tag. This is achieved by implementing using the extended attribute of the Android

file system. That is to say, any byte read from a tainted file will be tainted with the same

tag. This results in false positives, especially if the file is a database. Ideally we would

like byte-level filesystem taint propagation logic. However, this would greatly increase

implementation complexity and require modification of database data types [18]. This is

an area for future work. Despite of the false positives resulting from this design decision,

the impact on accuracy was negligible for the applications we studied: only 0.26% of

network traffic ended up in database in these applications.

Message-level taint tag propagation is implemented for IPC in ADEL. This is achieved

by instrumenting the parcel in binder as explained in Section 4.4.1. Again, false positives

are induced by using message-level propagation, resulting in under estimation for energy

leaks. Yet luckily even with this conservative estimate, we are still able to identify a

significant amount of leaks in real applications.

4.5 Validation

We next examine the accuracy of ADEL and the overhead incurred by ADEL. The

experiment is done on a Nexus One phone running Android 2.1 and ADEL.

4.5.1 Accuracy and Limitations

We examine the accuracy of ADEL by evaluating 8 applications, 5 of which are open-

source and three of which are closed-source. Table 4.1 lists all the application names and

corresponding functionalities. Note that we include three closed source applications for

validation because we found a limited number of open-source Android applications.By

analyzing each application with ADEL, we produced profiles of all network packets. This
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profile contained each packet’s content, its timing, and whether the packet ultimately in-

fluenced outputs to the user. Packets (transitively) reaching the taint sink were flagged as

used while the rest were considered unused. We read the source code of the open-source

applications, then manually examined all the network packets and used our understanding

of the code to determine whether ADEL correctly labeled each. Analysis of closed-source

applications required less direct confirmation. We compare the profile generated by ADEL

with the content we observe on the display. For example, we manually compared the con-

tent of each network packet with the news stories displayed on the user interface for ABC

news application. We identify the following types of the packet classification errors.

• False negatives: False negative refers to useful network transmissions that are in-

correctly identified as useless. ADEL tracks data flow, not control flow. This is mainly

because fully control flow tracking requires either static analysis [40] of application source

code, which would undermine on-line use or incur heavy overhead [53]. One example of

a false positive due to neglecting control flow follows. Many applications contain some

empty HTTP responses that contain only headers and codes, e.g., “200 OK”. These re-

sponses are indeed useful. They used to control the application, e.g., by using status code

to select subroutine to execute branch. However, because the influence on application be-

havior is a result of control flow, ADEL neglects it. Luckily, the size of such packets is

usually very small, resulting in only minor errors in network energy leaks. In the applica-

tions we study in Section 4.6, these empty HTTP responds account for only 0.52% of the

total traffic.

• False positives: False positive refers to useless network transmission that is falsely

identified as used. Another limitation of ADEL is the false positives induced during the

tag propagation process, including packet-level tag association, array-level, message-level,

and file-level tag propagation. One example we found in our experiment results from
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associating a single tag with each packet. For applications in which the tagged data unit is

large, e.g., a whole news article for news application, using packet-level association does

not influence accuracy. However, in applications like “Umich Busmap” each logic data

unit contains the text information for one bus stop and 2 to 3 data units are packed in the

same packet. As a result, information on unused bus stops is falsely identified as used if

any bus stop in the packet was used. These false positives could potentially be reduced by

fine-grained propagation at the cost of performance overhead.

We should comment at this point that unlike the use of taint tracking in security appli-

cations, misclassification of some network traffic doesn’t necessary prevent ADEL from

fulfilling its design objective: to help application developers identify and isolate program-

ming and design flaws accounting for most energy leaks. ADEL allowed the automatic

identification of numerous large energy leaks in real-world energy leaks as described in

Section 4.6.

4.5.2 Overhead Analysis

The performance overhead of ADEL results from the additional computation and stor-

age necessary for tracking taint tags. We have two goals when designing the experiments.

First, we want to understand the average slow down of the whole taint tracking flow real-

world applications. Second, we want to cover all taint propagation paths to understand

their overheads, allowing us to determine what sorts of slow-downs can be expected for

applications with particular behaviors. To achieve these goals, we conduct two sets of ex-

periments: one with real-world applications and one with synthetic applications targeting

at stressing different propagation paths.

We use two Nexus one phones, one of which runs the stock Android 2.1 operating

system, and one of which is equipped with ADEL. The portable interpreter was used on
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Figure 4.5: (left) Performance comparison of real apps. (right) Performance comparison
on synthetic apps.

both phones (recall that ADEL is only implemented in the portable interpreter for the

Dalvik VM).

Real-world applications: As shown in Figure IV.5(a), ADEL incurs 6.14× slow down

on average for real-world applications. We notice that for both application “Cross words”

and “Photo stream”, where tainted objects are intensively propagated after downloaded

before displayed, ADEL incurs roughly 10× overhead. For applications like “Read for

speed” and “UM Bus” where tainted objects are displayed immediately after downloaded,

ADEL incurs less than average slow down. Note that taint tracking generally requires

significant overhead, e.g., 20 × [53].

Synthetic applications: To cover all possible taint propagation paths, we construct

synthetic benchmarks to intensively exercise specific paths and potion in the tag flow. For

example, intensive downloading is to exercise taint source. Intensive tag propagations

through interpreted code, Inter Process Communication (IPC), and file are also exercised.

Figure IV.5(b) demonstrates the performance overhead of ADEL for these synthetic appli-

cations. Intensive tag propagation through interpreted code incurs the most overhead, e.g.,

10.75× slow down. This benchmark approaches the worst-case situation for ADEL over-

head: every instruction involves tag merging. This also explains the slow down of “Cross

words” and “Photo stream”. There are two main sources contributing to this overhead:
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context switches due to Inter Process Communication and lock acquisition due to shared

memory access. Both of these results from storing tags in a shared memory region and

managing them with Zygote as explained in Section 4.4. Other than the interpreted code

benchmark, the slow down of all other benchmarks are relatively small.

Despite of the nonnegligible overhead, ADEL is still a useful tool as it will be used

mostly by developers during application design time. One major concern about overhead

is that changes in performance might change the application behavior and hence prevent

us from finding energy leaks. For example, an application that uses a timer to control

downloads might potentially have different behavior if latencies were to change. However,

we haven’t encountered such cases in our study.

4.6 Application Study

This section describes ADEL-assisted study of network energy efficiency for 15 An-

droid applications. Seven of these applications are suspected to contain substantial energy

leaks and we were able to manually verify the presence of significant ADEL-detected

leaks in six of these. For the leaky applications, approximately 40% of network energy

consumption was the result of energy leaks. We then present four root causes of these

energy leaks. Our findings illustrate the value of ADEL and reveal opportunities for im-

proving application and Android framework API energy efficiency.

4.6.1 Experimental Setup

We study 15 applications as summarized in Table 4.2. These applications are cho-

sen based on two criteria: (1) there is intensive network activity, and (2) there is lim-

ited database usage in the application. We have the second criteria particularly because

database usage induces false positives as mentioned in ADEL’s limitation in Section 4.5.

Except the five open source applications we used for validation, all closed source appli-
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Table 4.2: Applications Studied
Category Applications

News and Weather
CNN, ABC, World News,

News and Weather
Transportation Google Maps, Umich BusMap

Game Crossword, Read for Speed
Social Facebook

Photography Photostream
Sports ESPN Score Center

Finance Stock Quote
Widgets ABC widget, Facebook widget

Other Taint test

cations are popular applications with more than 100,000 downloads in the Android Mar-

ket [8].

We used ADEL to identify (and isolate) network energy leaks in each application. We

are aware of two possible sources of bias in our experiments.

• Whether an application generates energy leaks is dependent on the application’s

active session length. For example, an application may download a significant amount of

content right after it is launched. These downloads generate energy leaks if users exit the

application immediately after launch, while they can be useful if users spend longer time

in the application. To eliminate this bias, we emulate an average application session by

spending more than 250 seconds in each application before exit. Note that 250 seconds

represents an average application session from user study [24]. During the application

session, we manually exercise the application functionalities. One exception for typical

use cases is widget applications. Widgets typically stay active without exiting. We there-

fore attempt to approximate typical use of two widget applications by placing them on the

home screen, reading updates from them every five to ten minutes, and monitoring their

activities for 30 minutes for each application.

• The propensity of an application to leak energy might depend on whether it is
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in its initialization or normal use phase. Imagine a news application that updates latest

articles during the first use of the application in a day and store them for later use. During

a single session, a user might not consume all the articles, making the unused articles

appear useless. However, the user might ultimately read these articles in a later session.

As a result, analysis of the first session might result in overestimation of energy leaks. To

solve this problem, we run each application three times, with a five-hour intervals between

runs.

To identify the root cause of energy leak, we leverage on the information ADEL pro-

vides together with manual inspection of the source code of the application if provided.

ADEL provides two major types of information to developers as follows. (1) Packet usage

detected by ADEL. For example, as shown in Figure IV.6(a), ADEL labels each packet

with a unique ID and associate the ID with packet size, type, whether it is shown on

display (effective), and whether the display is on or off when it is being shown. This infor-

mation helps developer to know the percentage of useless packet and also understand the

sources of energy leaks. (2) The packet content associated with its ID. This information

enables developer to understand what the useless packet contains and potentially indicates

the solution to eliminate such packets.

4.6.2 Findings

Figure 4.7 shows the percentage of useful network transmission of each application,

where useful network transmission refers to network packets that ultimately influence the

content displayed. We derive this ratio for each application by averaging traces from three

runs. A higher percent of useful transmission suggests a more efficient design. As shown

in Figure 4.7, the applications with lower bars on the left are suspected applications with

higher energy leaks. Interestingly, there is a clear cut between the suspected leaky appli-



112

(a) Result showing the usage for each network packet.

(b) Content contained in each network packet.

Figure 4.6: Information ADEL provided to developers.
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cations and efficient applications at 60%. To estimate the energy reduction of eliminating

these energy leaks, we examine the correlation between energy and total number of pack-

ets transmitted. As shown in Figure 4.8, energy consumed by network is roughly linearly

correlated with total number of packets sent with a correlation coefficient of 0.86. Note

that this figure is obtained by monitoring one user’s total network usage and energy con-

sumed using PowerTutor over a month. With this correlation, overall, reducing the energy

leaks detected by ADEL could save 56.5% of energy due to network communications for

the detected leaky applications.

In order to understand the root causes of the suspected energy leaks, we examine the
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Table 4.3: Root Causes for Leaks
Causes Applications

Design
flaws

Misinterp. API Photo Stream
Download scheme Umich Bus, and ABC widget

Repetitive download ABC widget
Aggressive prefetching ESPN, ABC, CNN, and Facebook

network packet usage profile generated by ADEL for each leaky application. The profile

contains each network packet’s taint tag, packet content, packet arrival time, and whether

the packet leads to content displayed in the end. We also manually go through their source

code if available to confirm our suspicions. We identify four major reasons for energy

leaks: (1) misinterpretation of callback API semantics, (2) poorly designed downloading

scheme, (3) repetitive downloads, and (4) overly aggressive prefetching. We associate

applications with their causes of energy leaks in Table 4.3. Note that a single application

may have multiple types of energy leaks. We categorize the first three causes as design

flaws and the last as (overly) aggressive prefetching.

4.6.3 Application Design Flaws

This subsection, expands on the three types of unambiguous design or programming

errors that resulted in network energy leaks. Section 4.6.4 will deal with energy leaks

caused by (overly) aggressive predictive prefetching.

Misinterpretation of callback API semantics:

We find that the application “Photostream” incorrectly uses APIs, leading to substan-

tial network energy leaks. “Photostream” is a sample application written by Google that

intends to show beginner developers how to use specific APIs. The application allows

users to retrieve other user’s pictures from Flickr. As shown in Figure 4.7, only 38.6% of

network transmissions are used to influence the display.

Investigating the content and timing of unused network packets reveals that the “Photo-
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Figure 4.9: Histogram of percent of useful network transmission from user study for sus-
pected leaky applications.

Stream” application downloads many unused packets even when the application is put into

the background. By exploring the source code, we confirm that the background download-

ing thread is stopped in onDestroy(), a callback method that is not guarantee to be called

even after the application is put into background. As a result, the application continues

downloading objects that cannot ever be displayed, resulting in network energy leaks.

This bug can influence many applications due to misunderstanding of the documenta-

tion. The Android SDK documentation clearly suggests that developers to clean up threads

in the onDestroy() callback method right before the application is about to be killed. This

suggestion is reasonable for handling threads in general because it reduces the cost of ini-

tializing a new thread when the application is resumed. However, in this particular case, it
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produces energy leaks because the thread continues downloading (useless) data. To make

things worse, the source code of “PhotoStream” was provided as an example application

for use by beginner Android developers, propagating the design error into other applica-

tions. Note that this bug could be easily fixed by stopping the thread in onPause(), which

is guaranteed to be called right after the application is placed in the background.

Poorly designed downloading scheme: Poorly designed downloading scheme refers

to frequent updates without considering either device state (e.g., whether the screen is on or

off) or user input. As shown in Table 4.3, we identify two applications with this problem:

“ABC widget” and “Umich BusMap”. The first wastes 78.0% of network transmissions

and the second wastes 46.9% of network transmissions.

“ABC widget” is the news widget application that can be placed on home screen. Sur-

prisingly, by examining the timing of unused network packets, we find that the widget

keeps updating news article every 5 minutes, regardless of whether the widget is being

shown or even whether the display is on or off. This poorly designed downloading scheme

is detrimental to smartphone battery life as it not only wastes energy consumption on net-

work and CPU when the phone is active, but also triggers the phone to wake up every 5

minutes even when it is idle.

More interestingly, further exploration on the widget related APIs in Android leads us

to believe that the Android framework fails to provide a good mechanism for widgets to

stop updating when not visible. There are three scenarios when a widget is not visible: the

display is off, the widget is placed on another home screen that is not displayed, or another

application is running in the foreground. Android’s API provides an indirect way to help

the widget to identify the first scenario [1], while it is impossible for widget to identify the

latter two. Apparently, “ABC widget” even fails to identify the first scenario. This finding

suggests necessary improvements in the Android framework API, e.g., providing widget
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applications notifications when they are not visible or stop sending the update notifications

when widgets are not visible.

“Umich BusMap” contains another example of a poorly designed downloading scheme.

It is a map-based application that informs users to the next three school buses to arrive at

bus stops. A user selects specific stop to view its bus schedule. The schedule for only a sin-

gle stop can be examined at any particular time. Examination of the timing and content of

unused network packets reveals a cause for energy leaks: regardless of which stop the user

selects, the application downloads schedules for all stops, even those that are not visible

on the current map. To eliminate the inefficiency, developers should design downloading

schemes that take possible (and ideally common) user input into consideration.

Repetitive downloads “ABC widget” application is found to have repetitive down-

loads, e.g. identical copies of same packets are downloaded and yet never used. By

examining the content of its unused network packets, we discover that every time the

application updates, it downloads all recent news articles, even when they have not been

updated. Clearly, this observation suggests that the application naïvely fetches the latest

news articles from Internet without caching any of the downloads. In order to fix this bug,

application developers could add an expiration time for each article or have the application

server notify the client of new updates.

4.6.4 Overly Aggressive Prefetching

Prefetching has been used extensively in both desktop and mobile environments to

improve user satisfaction by eliminating download delays for data that are expected to be

required soon. It generally uses prediction, often of future user actions. Such prediction

cannot be perfectly accurate. Therefore, even a well-developed predictive prefetching

application will download some objects that are never used. In order to enable a rational
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understanding of the trade off between response time and unused transmission, developers

must have the unused transmission of the target application to start with. ADEL helps to

provide this number and hence also assists developers to determine when it would improve

application energy efficiency by (possibly on-line) adjustment of prefetch aggressiveness

and/or prefetching predictor accuracy. As shown in Table 4.3, four out of seven suspected

leaky applications we studied generate energy leaks due to significant wasted prefetching.

Whether an application generates significant wasted prefetching cannot be determined

by a single user’s trace. This is mainly because an unnecessary packet for one user may

be useful for another user due to varying use patterns. Hence, to capture the prefetching

aggressiveness of an application, it is necessary for us to study the applications with normal

usage patterns.

We conducted a small-scale user study with 8 graduate students who are regular smart-

phone users. Note that none of the users were told the intention of the experiment in order

to prevent their behavior from being biased. Each participant was asked to use the four

leaky applications as they would use in daily life. There was no time requirement for the

use of any particular application. After gathering user traces for one application, the per-

cent of useful network transmission is derived from each trace. Note that this ratio directly

indicates prefetching aggressiveness because they are inversely correlated: a smaller per-

cent of useful network transmission suggests more aggressive prefetching schemes. Fig-

ure 4.9 summarizes the distribution of the percent of useful network transmission for each

application.

We can draw two observations from Figure 4.9.

• The percent of useful network transmission from each user varies significantly for

one application due to user-dependent variation in application use. As shown in Figure 4.9,

the percent of useful network transmission spans a range of more than 40%. This substan-
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tial variation among users suggests that the optimal prefetching aggressiveness depends on

the user; it suggests that a static prefetching scheme is unlikely to be optimal for all users.

• “Facebook” is more efficient than the other three suspected leaky applications. For

example, more than 80% of the network transmissions are useful for 5 of the 8 users.

What’s more, the mean of the distribution is 78.4%, which indicates that 78.4% the down-

loaded content turns out to be useful for an average user. As a result of this, we find

“Facebook” not leaky, despite of our previous suspicion. This difference in suspected

candidates and confirmed leaky applications further reassures the necessity for the user

study.

Overall, based on our observations, the applications “ABC”, “CNN”, and “ESPN”

should reduce their prefetching aggressiveness to enable a more energy efficient design.

ADEL’s ability to determine prefetching aggressiveness enables three additional use

scenarios in addition to detecting energy bugs. First, developers can use ADEL to learn

the effectiveness of the prefetching scheme of their target applications and adjust during

application design. Second, users can occasionally use ADEL to determine whether an ap-

plication is prefetching with appropriate aggressiveness and adjust this parameter within

the application or operating system. Third, with limited performance optimizations of

ADEL, it could potentially be used within the regular operating system to provide ap-

plications with a real-time feedback on prefetching energy waste for one particular user.

Applications could then adjust their prefetching aggressiveness to customize the user’s

current behavior.

4.7 Summary

In this work, we provided a definition of energy leaks: common but hard to automati-

cally detect energy waste resulting from useless activities in smartphone applications. We
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have described the design and implementation of ADEL, an Automatic Detector for En-

ergy Leaks. ADEL identifies unnecessary network communication and its root causes via

dynamic taint tracking. ADEL incurs 21.8% performance overhead on average.

We studied 15 real-world applications using ADEL and found that 6 of these have

significant energy leaks. Eliminating these energy leaks results in an average 56.5% re-

duction in energy consumption due to network communication. Our study revealed four

common causes for energy leaks: misinterpretation of callback API semantics, poorly de-

signed downloading scheme, repetitive downloads, and (overly) aggressive prefetching.

Both ADEL and our study of network energy leaks in Android applications have the po-

tential to help application developers improve energy efficiency.
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Related work

5.1 Power Model Construction

This section describes related work on both online power modeling and smartphone

use analysis. We will summarize these works separately.

Power modeling:Power modeling has been well studied by many researchers, both for

mobile embedded systems and general-purpose computers. Some power modeling tech-

niques [32, 33] require deep knowledge of the relationship between processor functional

unit activities and their resulting power consumptions. Run-time functional unit activities

are monitored using built-in hardware performance counters. In contrast, other researchers

developed “black-box” microprocessor power models [13, 17] that require no knowledge

of hardware component implementation. These models are based on the assumption of

linear relationships between processor power consumption and several hardware perfor-

mance counters, e.g., instructions executed and translation lookaside buffer misses. Flinn

and Satyanarayanan [25] developed a workstation power modeling technique that assigns

energy consumption to processes or procedures within a process. Such models are simple,

fast, and impose low overhead. However, they only model power consumed by the CPU

and therefore provide only part of the solution for embedded system power estimation.

Mobile embedded system power models are generally component-based. Cignetti et

121
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al. proposed a full-system power model for Palm personal digital assistant [16] and Shye

et al. [50] derived a system-level power model for Android platform smartphones. Both

power models were constructed by correlating operating system visible state variables

with power consumption while running a range of normal software applications. This

modeling technique is sometimes accurate. However, it suffers from a potential drawback:

the accuracy of the resulting model relies on the training applications exercising the full

set of component activity and power management states that may be encountered during

the use of model. We suggest, instead, that training and characterization applications be

designed to explicitly exercise all relevant system states, so that the resulting model is

appropriate for use with arbitrary applications. Section 2.2.2 describes the selection of

components and states to consider.

Application-based power modeling has also been studied on mobile systems. Negri et

al. [41] proposed a Finite-State-Machine (FSM) based approach that models each applica-

tion as a FSM and the power consumption of each state is measured. However, this work

requires off-line characterization of each application to understand the FSM for modeling

and therefore cannot handle a large amount of applications. Our work differs by requiring

no additional understanding of the application’s property.

The above power models are constructed using external power meters. To the best

of our knowledge, only two papers have proposed battery behavior based power model

construction techniques. The concurrent work from Dong and Zhong [20] proposed an

automatic construction of power model using a smart battery interface, while Gurun and

Krintz [27] proposed an adaptive power estimation model that uses the built-in Battery

Monitor Unit (BMU). Both techniques require knowledge of the discharge current and

remaining battery capacity, which are not available for most phones. Our technique relies

only on knowledge of the battery discharge voltage curve and access to a battery voltage
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sensor, which is available on most smartphones.

5.2 Characterization of Real-world Workload

This section summarizes characterization of real-world workload.

A number of commercial tools have been released for bug detection. The default mo-

bile platform bug report system including iOS, Android, and Windows, only report ap-

plication crash logs to developers. Yet it is often not that useful because the log rarely

contains the condition that triggers the crash, e.g., different network environment. More-

over, even when the bug reports are helpful to fix crashes, it rarely reports any performance

inefficiencies that the user experiences. Another commercial tool that is also available to

monitor mobile applications’ usage behavior in the wild is called Flurry [4]. This tool

reports application launches, users’ session length and geographic information of users.

None of these tools provide information that is fine-grained enough for developers to track

user transactions and detect performance inefficiencies.

There are also research works that have collected user traces from the wild to detect

inefficiencies in energy, network or application behavior. Carat [3] is a tool that collects

energy usage in the wild while 3GTest is a tool that focuses on network usage. Falaki et

al. [24] discovered the diversity in user behaviors and suggested user-adpative mechanisms

to improve energy efficiency and user experience. Banerjee et al. [10] summarized users’

battery charging behavior.

5.3 Performance Monitoring and Optimization

Panappticon detects and monitors perceived user transactions of mobile application

experienced in the wild. It further detects system and application inefficiencies and make

suggestions. This section summarizes prior works on the following related topics: perfor-
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mance monitoring and debugging of user transactions, monitoring mobile applications in

the wild, and characterization of mobile workloads.

Performance monitoring and debugging for user transactions or request: A num-

ber of works have been proposed for performance monitoring and debugging for user

transaction or request, especially for distributed systems. These prior works can be placed

into two major categories, as summarized as follows.

The first category of works require developers’ detailed knowledge of applications se-

mantics or source code to capture user transactions [11, 34]. Magpie [11] is a system

that monitors and characterizes user requests for servers. It leverages the event semantics

provided from the developers to join the events logged in the system together into transac-

tions. Magpie is instrumented on Windows platforms. Different from Magpie, Panappti-

con does not require developers’ input, which eases the burden for developers. Also note

that Magpie focus on server workloads while Panappticon focus on mobile platform. This

difference in platforms leads to different system design.

Another work in the first category is LagHunter [34]. It is a debugging tool that iden-

tifies perceptible performance bugs by monitoring application behaviors. To identify user

transactions, it requires developers to provide a set of landmark methods, which are nor-

mally the methods that handle UI inputs. By inserting LagHunter code in such methods,

the call stack of each landmark method can be tracked. Unlike Panappticon, the approach

in LagHunter only allows tracking synchronized UI event handling. This limitation sig-

nificantly constrains its usage on platform that allows multithreading like Android, where

most complicated transactions are handled asynchronously.

In contrast, the second category of works treat the applications as black-box and do not

require developer’s input [48]. AppInsight is a system that instruments mobile application

binaries to automatically identify the critical path in user transactions. Similar with our
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approach, AppInsight is also using causality between different work unit across threads to

identify user transactions. However, different from our work, AppInsight does not record

any kernel event or framework activity and therefore won’t be able to catch any resource

dependency between threads and detect system-wide inefficiencies.

Characterization of mobile workloads performance: Another goal of Panappticon

is to understand the impact of architectural changes on perceived user transactions so that

we could identify trends to guide future design. To this end, the closet work done by

Gutierrez and et. al. [28] characterized the microarchitectural behavior of a set of rep-

resentative smartphone applications and constructed a mobile benchmark based on these

characteristics. They found that instruction cache miss rate of the smartphone applications

is higher compared with SPEC and therefore suggest a bigger instruction cache. They also

observed potential opportunities to improve CPU performance by integrating more capa-

ble branch predictors. Our work differ with their work by having different purpose and

focusing on user transaction only instead of performance in general.

5.4 Energy Debugging and Optimization

Our work in Chapter IV uses dynamic taint analysis to identify energy leaks due to

network communication. This section summarizes prior work on the following related

topics: energy debugging, network energy reduction, and taint analysis.

Energy debugging: Energy debugging is an emerging research area, with a limited

number of publications so far. The work by Pathak et al. [43] is closest to ours. They

provide a taxonomy of energy bugs by examining posts from mobile user forums and

operating system bug repositories, but do not provide solutions for finding and correcting

energy bugs. They categorize energy bugs into four classes: hardware-related, software-

related, external-condition-triggered, and those of unknown causes. Our work provides a
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solution for detecting and isolating energy leaks, which covers a subset of energy bugs in

their taxonomy.

Reducing network power consumption: A lot of work focuses on reducing energy

consumption due to network communication. This work can be placed in two major cat-

egories: (1) adapting power management scheme to network traffic and (2) adapting the

traffic to power management scheme. Most prior work assumes that transmitted data are

useful. We question this assumption and detect network energy waste due to transmis-

sion of useless data. Existing network energy consumption optimization techniques can

be applied together with our work: they are orthogonal and in some cases synergistic.

Techniques have been proposed to adapt network power management to application

traffic [7, 36, 46]. Krashinsky and Balakrishnan [36] propose to adapt network interface

sleep durations depending on past application network activity. This allows the network

interface to sleep for longer periods of time when there is no activity, thereby reducing

the energy consumed receiving beacons sent from the access point. Anand et al. [7] de-

scribe a self-tuning power management scheme that provides a simple interface allowing

applications to disclose hints about their intent in using the network interface. The power

management strategy adapts to observed network access patterns.

Another class of network energy reduction techniques adapt network traffic to the

power management scheme. These approaches use an additional support device to shape

the network traffic. Some used an additional proxy server [9, 31, 49]. Armstrong et al. [9]

proposed to shift the polling responsibility from the mobile client to a proxy server so

that network workload is sent and received in batch. This approach prevents the network

card from frequent transition between power states and hence allows the network card to

sleep longer between transitions. Xie et al. [51] had the wireless access point select certain

parameters for its clients, such as beacon interval, listen interval and contention window
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size, in order to reduce the simultaneous wake-up events of clients.

Taint analysis: Our energy leak detections and isolation framework uses dynamic

taint analysis. In particular, we build upon TaintDroid [22], an extended Android platform

that supports system-wide taint tracking through the Dalvik Virtual Machine (DVM) and

persistent storage, e.g., in files. TaintDroid detects security flaws in applications for mo-

bile devices by associating tags with sensitive information, e.g., location information or

phone contacts. Information leaks are detected when sensitive information leaves the mo-

bile devices, e.g., via the network interface. Our work differs by solving the very different

problem of identifying communication energy leaks. This new problem definition requires

changes in the representation of tags and method of tracking information flow (from net-

work interfaces to eventual display or deletion). To the best of our knowledge, this is the

first time taint tracking analysis is used to identify energy leaks.

There are other methods of dynamic taint analysis in virtual machine and interpreter

environments [15, 29, 42, 47, 52]. Haldar et al. [29] instrumented the Java String class

with taint tracking and Xu et al. [52] automatically instrument the PHP interpreter source

code for dynamic information tracking. These papers all solve entirely different security-

related problems from our work, but their implementations are related because all use taint

tracking.



CHAPTER VI

Conclusion and Future Work

My thesis is dedicated to provide a practical, automatic, efficient, and effective frame-

work to help mobile system and application developers to understand, monitor, and opti-

mize the energy consumption and performance of their designs. My contributions can be

summarized as follows.

• Energy related: We proposed an automatic power model construction technique to

derive the power model of hardware components. This is the first time an automatic model

construction technique is proposed. We also developed PowerTutor, the first tool that

monitors the real-time energy consumption of the different hard components and different

applications. Equipped the PowerTutor, we performed the first study on energy usage

by analyzing hundreds of unique users’ over one year’s traces. As far as we know, this

is the first study on energy usage with this scale. One key observation revealed by the

study is that display and network interfaces are the two top most energy hungry hardware

components.

• Performance related: We identified perceived user transaction as the performance

metric for mobile system and applications. We provided Panappticon, a light-weight,

system-wide, fine-grained event tracing system that automatically identifies critical path in

such transactions. This is the first Android-based framework that monitors perceived user
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latency. We also deployed Panappticon on real users. Our traces collected from Panappti-

con reveals performance inefficiencies in applications, operating system policy.

• Having the knowledge from both energy and performance, we proposed energy

optimization technique that maintains user perceived experience. We observed that oper-

ating system and applications frequently consume energy to perform tasks that are ulti-

mately useless, a phenomenon we call Energy Leaks. We then proposed and implemented

ADEL (Automatic Detector of Energy Leaks), the first diagnosis framework that detects

and isolates energy leaks resulting from unnecessary network communication. ADEL re-

vealed that many popular applications built by professional developers have significant

network usage inefficiencies that previously are unknown.

In summary, my disseration indicates the importance of the following rules for mobile

system and application developers:

1. Understanding the energy and performance indication for design decisions;

2. Identifying optimization opportunities after measuring real-world behavior;

3. Balancing the tradeoff between energy and performance when developing opti-

mization strategy.

6.1 Future work

There are a number of natual future directions I’m interested in exploring:

• Fine-grained power modeling: Providing developers code-level power consump-

tion and giving concrete suggestions for energy optimization is the ultimate goal for power

modeling. To achieve this, there are two major challenges: (1) how to get fine-grained

power measurement? On nowadays processor, each method in the source code can be

executed more than a million times per second. This presents a huge challenge for power

modeling. (2) How to attribute this fine-grained measurement to the actual code? Many



130

execution is done via asynchronous fashion and this breaks the temporal correlation be-

tween the power measurement and the code being executed. I’m interested in pursuing

this direction to overcome these two challenges.

• The optimization techniques: Besides network, I plan to pursue other hardware

components to reduce the total energy consumption while maintaining user experience,

in particular, CPU and the OLED display. These three components together are the top

three energy hungry devices in smartphone today. For CPU, we face the similar chal-

lenge for network: how to track unnecessary computation? This can be solved by using

similar taint-tracking infrastructure. OLED presents a different challenge: how to convert

energy-inefficient colors into energy efficient ones without influencing user’s perceived

experience?
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