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ABSTRACT
Improving and optimizing user-perceived smartphone performance
requires understanding device, system, and application behavior for
real-world workloads. However, measuring such performance is
challenging due to the multi-threaded, asynchronous programming
paradigms used in modern applications and the multiple layers of
hardware and software used to respond to user input events. We ad-
dress this challenge with Panappticon, a lightweight, system-wide,
fine-grained event tracing system for Android that automatically
identifies critical execution paths in user transactions. Panappti-
con monitors the application, system, and kernel software layers
and can identify performance problems stemming from application
design flaws, underpowered hardware, and harmful interactions be-
tween apparently unrelated applications. We carried out a 14-user,
one-month study of an Android smartphone system instrumented
with Panappticon, which revealed a number of specific problems
and areas for improvement that may be of interest to system de-
signers, application developers, and device manufactures.

1. INTRODUCTION
Most mobile applications are interactive. Typically, an input

from the user triggers a series of operations culminating in user-
visible output, often an update to the display. User experience de-
pends on perceived responsiveness [1], so controlling the latencies
of such transactions is important for designers of applications, op-
erating systems, and hardware platforms.

We define a user-perceived transaction as a series of operations
started by the user’s manipulation of the device (e.g., a screen touch
or key press) and ended by a display update. Intuitively, the transac-
tion captures the interval between the user instructing the device to
do something and the expected result being displayed. Despite the
importance of such transaction latencies to user experience, there is
little existing development tool support to identify or determine the
causes of slow transactions, leaving developers in the dark. This
is mainly due to the asynchronous, multi-threaded nature of inter-
active applications. To keep the user interface (UI) responsive, ap-
plications must do lengthy or potentially blocking operations on
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background threads, complicating tracking of the execution flow of
a single transaction. Analysis is further complicated by other unre-
lated applications or system processes running on the same device
that may influence perceived performance. Therefore, analyzing
the internal behavior of an application is not sufficient to fully char-
acterize transaction latencies and causes. AppInsight [2] instru-
ments application binaries to study user transactions. It identifies
some performance problems but cannot explain poor performance
resulting from indirect interaction among processes. We show an
example of such a problem identified by our work in Section 6. All
processes and applications that may influence each other should be
considered.

In this work, we describe Panappticon1, a system that identifies
the user-perceived transactions of real-world users and can help di-
agnose the reasons for poor user-perceived performance. We illus-
trate its use with a 14-user, one-month study. Panappticon is useful
to three types of people.

• Application developers can use Panappticon to identify in-
efficient application code and optimize accordingly. For example,
in our study we found that Reddit News, a popular Android applica-
tion, has many slow transactions due to CPU contention between its
main thread and the non-critical system activities it triggers. Delay-
ing the non-critical work until after the user transaction completes
would improve user-perceived performance.

• Operating system designers can use Panappticon to opti-
mize system policies. For example, in our study we found that the
default DVFS (Dynamic Voltage and Frequency Scaling) governor
included with Android nearly doubles the latency for transactions
over 80 ms in duration, despite being designed for interactive work-
loads. An improved governor is needed and we have some sugges-
tions on that topic.

• Hardware designers and manufacturers can use Panappti-
con to better understand the implications of architectural decisions
for future devices, e.g., the relative speeds of different hardware
components. We observe that typical non-gaming applications are
not parallelized and do not benefit from multi-core processors, sug-
gesting that designers should not neglect single-core performance.

Panappticon establishes causal relationships between user inputs
and display updates by tracking execution flow among threads,
through asynchronous calls, and across interprocess communica-
tion boundaries. This is achieved by instrumenting event handlers,
asynchronous call interfaces, and the interprocess communication
mechanisms in both user space and kernel space to log events from
which the execution flow can be reconstructed. The system further
logs resource usage information, including context switches and
blocking on network interfaces and storage devices, to help iden-
tify the root causes of slow transactions.

1A Panopticon is a type of building that allows a watchman to un-
obtrusively observe all occupants.
http://en.wikipedia.org/wiki/Panopticon
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Figure 1: Illustrative example of a user-perceived transaction: the
horizontal axis represents time and the vertical axis distinguishes
threads.

We validated Panappticon on ten open-source applications, man-
ually confirming that the detected user transactions and latencies
were correct. Panappticon incurs an average 6.1% performance
overhead and has unnoticeable impact on battery life.

This work makes three major contributions.
• We provide an unobtrusive methodology and design for ex-

tracting user-perceived transaction latencies based on causal rela-
tionships among the operations triggered by an input.
• We describe Panappticon, an open-source2 system that ap-

plies the above methodology to automatically characterize user-
perceived transactions and provide detailed resource usage infor-
mation, allowing for root-cause diagnosis of the causes of slow
transactions.
• We present results of a real-world user study of 14 Android

users running Panappticon on their phones for one month and pro-
vide three case studies showing how Panappticon can benefit ap-
plication developers, system developers, and smartphone manufac-
tures. The data traces are publicly available2.

2. GOALS AND DESIGN CHALLENGES
In this section, we give the formal definition of our goal: mak-

ing characterization of user-perceived transactions easy. We also
give an example to illustrate the use of Panappticon and explain the
challenges we faced during its design.

2.1 Design goal and example
We define a user-perceived transaction to be a series of opera-

tions started by a user’s input to a computer system, e.g., a screen
touch or button press, and ending with a display update. General-
izing the concept and implementation to other outputs, such as the
audio device, would not pose major challenges. The latency be-
tween the UI input and the update captures the latency perceived
by users. That is, any operation not included in the user-perceived
transaction does not influence the perceived latency and therefore
does not directly impact user experience. Some UI inputs can trig-
ger multiple display updates; we define the last display update as
the end of the transaction.

Figure 1 depicts a user-perceived transaction. Imagine a simple
application that downloads and displays celebrity quotes. As shown
in Figure 1, the transaction is started by a button press. In the UI
event handler triggered by this input, the main UI thread submits
an asynchronous task to a worker thread to download the quote.
During execution of the asynchronous task, the worker thread may
block while waiting for packets from the network. After the down-
load finishes, the worker thread posts a message back to the UI
thread to display the quote. In this example, the operations be-
tween the user input and display update form one user-perceived
transaction.

Panappticon seeks to identify such user-perceived transactions

2http://ziyang.eecs.umich.edu/projects/panappticon/

and determines the performance bottlenecks for each. To achieve
this goal in the preceding example, the system must record the user
input and, based on the asynchronous call, establish a causal re-
lationship between the UI event handling and the worker thread
execution. Then, the system must record the network block and, fi-
nally, link the worker thread execution to the UI update by tracking
the posted message.

To optimize user-perceived transaction latency, we need to iden-
tify the critical path for each transaction and understand the domi-
nant components. The critical path is the bottleneck execution path
whose length captures the perceived latency between user input and
display update. The nodes on the critical path are responsible for
delay; increasing their execution times would increase the latency
between input and update. In the example above, the path between
the input and update nodes through the worker thread represents the
critical path, with the network responsible for most of the delay.

2.2 Design challenges
We faced the following major challenges in the design of

Panappticon.
• A user transaction can involve execution across threads

and process boundaries. For example, in the preceding example,
the main thread submits work for asynchronous processing by a
background thread, a common Android programming pattern as
explained in Section 4. Even more challenging, some applica-
tions contain two or more independent processes, one running the
UI and the others doing work asynchronously with all actively in-
volved in the user-perceived transaction. Therefore, we must track
asynchronous (and synchronous) calls across threads and process
boundaries.

• Display updates are not always caused by the most recent
user input event. In the preceding example, it is possible that other
display updates are triggered by a change in system state (e.g., a
change in network connectivity) between the input event and dis-
play update. In a more complicated application, a second user
transaction might start before the first finishes. Both scenarios re-
sult in display updates being separated from the user input events
that caused them by other user input events. This prevents one
from grouping display updates with their most recent input events.
Panappticon must explicitly track causal relationships among oper-
ations.

• It is necessary to know the underlying hardware state. One
of our goals is to help system and application developers determine
the reasons for lengthy transactions. Possible causes include con-
tention for the processor, long blocking times on network or disk
IO, or problems with system policies such as DVFS. For instance,
in our running example, if the network blocking time is reduced,
the user-perceived latency would also be reduced. To achieve this
goal, we must efficiently log fine-grained resource usage informa-
tion, such as IO blocking times and context switches.

• Mobile devices are resource constrained. The system must
have low performance and energy overheads so as to not influence
user experience. Limited smartphone CPU throughput, memory,
and energy capacities prevent logging of non-essential data and rel-
egate user transaction analysis to the server.

3. APPROACH OVERVIEW
We developed and implemented an event-based tracing infras-

tructure that can efficiently capture (1) the relationships between
operations to identify user transactions across threads or processes
and (2) which resource (e.g., CPU, network, disk, etc.) a thread is
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(a) Execution traces divided into “atomic” intervals. The dotted ar-
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are unrelated to this user transaction and the dashed portions indi-
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(c) Relationship graph showing execution dependencies for this
transaction. Each node represents one execution interval, with an in-
coming edge indicating the interval was triggered by the preceding
node. Given this graph, the transaction latency is easily computed
from the critical path.
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(d) From the events logged above, the full relationship graph can
be reconstructed. The begin and finish events demarcate the execu-
tion boundary for each node and the submit and fork events indicate
which node triggered an interval.

Figure 2: Example execution sequence illustrating our methodology for user-perceived transaction extraction. Figures 2(a) and 2(c) illustrate
that the sequence can be viewed as a directed acyclic graph of dependent execution intervals. Figures 2(b) and 2(d) show how the graph
can be reconstructed from a log of simple events. In this transaction, the user input enqueues an AsyncTask that, after communicating with
a background service via RPC, updates the display. It also forks a background thread to read from disk and then update the display. The
transaction ends after the second display update.

using or blocking on at each instant to reveal performance bottle-
necks. This section describes our methodology, shown in Figure 2.

3.1 Methodology overview
Our technique for tracking user transactions across threads and

processes is based on identifying and linking “atomic” intervals
of thread execution. Such intervals represent work that happens
contiguously, e.g., a worker thread processing one task from a
task queue. Intervals processing the same transaction are casually
dependent—one interval triggers the execution of the next. Fig-
ure 2(a) shows an example execution trace divided into intervals,
with arrows indicating the causal relationships. Figure 2(c) shows
the relationship graph we wish to obtain.

Extracting the relationship graph requires (1) separating each ex-
ecution trace into “atomic” intervals, (2) identifying the causal re-
lationships between intervals, and (3) identifying the initial (e.g.,
user input) and terminal (e.g., display update) intervals of user-
perceivable transactions. We log events sufficient for each task,
as illustrated in Figure 2(b). For the first two tasks, we instrument
the Android platform and kernel to record events for popular pro-
gramming paradigms. For the third, we instrument the platform to
record user input and display updates, tagging the current interval.
These allow graph construction, as shown in Figure 2(d).

To determine the causes of latency, we record events indicating
resource use, e.g., context switches for CPU and blocking times for
disk and network access. Section 4 describes all captured events.

3.2 Architecture overview
Panappticon contains the five major components shown in Fig-

ure 3: a userspace logger, a kernelspace logger, an event collector,
a server-side collector, and a user transaction analyzer.

Userspace logger and kernelspace logger: The userspace and
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Figure 3: System architecture overview.

kernelspace loggers record the events mentioned in the preceding
section. Specifically, input events, display update events, and most
events indicating causal relationships are captured in userspace,
where the use of high-level programming paradigms make event-
based inference easier. The kernel logger captures resource utiliza-
tion events and some events indicating causal relationships across
process boundaries, e.g., forking and IPC transactions. Section 4
enumerates all the events captured by these two loggers. To min-
imize the performance impacts of these loggers, both buffer event
records in memory, sending them to the collector in batch when the
buffer is full.

Event collector and server collector: The event collector is
responsible transmitting traces from the loggers to the server-side
collector for processing. To minimize performance and energy
overheads and avoid losing data, the logs are uploaded in batch
only when WiFi is available. Failed transmissions are buffered to
the SDcard and retried later.

User transaction analyzer: The user transaction analyzer ex-



tracts the relationship graphs using the method described in Sec-
tion 3.1. From these graphs, it extracts user transactions and their
corresponding user-perceived latencies and resource usages. Sec-
tion 4 describes the graph extraction process.

4. INSTRUMENTATION DETAILS
Before Panappticon’s design could be determined, it was neces-

sary to answer the following questions. (1) What data need to be
captured? They should be sufficient to identify each user transac-
tion and its resource use with low overhead. (2) How should these
data be used to construct the relationship graph to link user input
with display update? (3) How should resource accounting be done
for each transaction? This section answers these questions.

Panappticon is based on Android 4.1.2. Some of the implemen-
tation details below are specific to this Android version.

4.1 Background: Android
Android is a Linux-based operating system developed by Google

for mobile devices such as smartphones and tablets. This subsec-
tion summarizes Android properties to provide background useful
for understanding Panappticon.

Dedicated UI handling: Applications on Android are UI-
centric. All UI related events, including serving user interactions
and updating the display, are handled on one dedicated thread,
which is also the main thread of each application. To maintain
a responsive UI, developers should avoid lengthy operations, or
blocking of the UI thread [3]. Instead, they should create separate
worker threads. This property motivates us to track asynchronous
calls across threads.

Looper thread: Most Java threads managed by the Android sys-
tem, including the main thread of each application used for UI
events, use a message queue model. Messages are placed in a
queue and the thread loops indefinitely, processing messages from
the head of the queue. In Android, such threads are called Looper
threads and share a common implementation of the message queue
and looper functionality. The shared code facilitates easy logging
of message submission and execution events.

4.2 What information do we capture?
There is a trade off between the amount of information Panapp-

ticon gathers and its overhead. For example, a complete trace of
every method in the system framework that applications could po-
tentially call during a transaction would allow us to have full knowl-
edge of the system status. However, this would slow down the
application by orders of magnitude. To this end, we record the
minimum amount of information that is necessary to identify user-
perceived transactions and their performance bottlenecks. This in-
formation can be placed in the following categories: (1) user inter-
action events including screen touch and key press, (2) causality be-
tween asynchronous calls and callbacks within and across threads,
(3) inter-process communication between threads and processes,
(4) various thread synchronization mechanisms and the causality
between threads due to synchronization, (5) resource accounting
for each thread such as context switching and blocking on network
and disk IO, (6) other causality relationships between threads, e.g.,
forking a thread, (7) display update, and (8) additional information
that helps to track foreground applications and application names.
Records for each event contain the following fields: Timestamp,
Event_type, TID, Data, (CPU_core). CPU_core specifies
the core associated with an event and is only available for kernel
events. Table 1 summarizes the events Panappticon logs. We now
explain each type of event.

User input: We record input events due to screen or button

touches and those from the software keyboard. In Android, the
first type of input is dispatched directly to the foreground applica-
tion through the onInput() callback method in the View class. Un-
like the first type of input, software keyboard input is dispatched to
the foreground applications through another systemUI application,
which translates screen touch events into keyboard inputs.

Asynchronous calls and callbacks: As we mentioned in Sec-
tion 4.1, the UI-centric nature of Android applications requires
developers to use asynchronous worker threads for lengthy opera-
tions. To achieve this, there are two common programming models
in Android: (1) start a worker thread and post a message to the UI
thread to update the display after the work is done or (2) submit a
task to the pool of thread executors.

To handle the first case, we instrument the MessageQueue class
in the Android framework library to capture the causal relationships
between message enqueue and dequeue events. Each message is
associated with a unique ID. For the second case, we instrument
the ThreadPoolExecutor class in the generic Java library to record
the causal relationship between task submission and consumption.
These events are matched using task ID.

Inter-process communication: As mentioned above, Android
uses a kernel-level inter-process communication implementation
called Binder for RPC. For each process, Binder manages a pool of
threads to execute incoming RPC requests. For each call or Binder
transaction, we log the full RPC call by tracking events across pro-
cess boundaries.

Synchronization mechanisms: Contention for virtual resources
(worker threads, shared data segments, etc.) can result in slow
transactions. Access to such resources is usually mediated by syn-
chronization primitives, so we log contested accesses to the follow-
ing in-kernel primitives: waitqueues, semaphores, mutexes, and fu-
texes. Specifically, we log when a thread blocks waiting for access,
when it resumes from that block, and, after releasing a primitive,
which waiting threads are awakened. We do not log lock, unlock,
or spinlock events due to the volume of accesses—contested ac-
cesses are much rarer.

Resource accounting: To help determine the bottlenecks for
each transaction, we log access to the three main time-shared re-
sources used by Android applications: processor, network, and
disk. For processors, we log each context switch, including the
incoming thread ID, the outgoing thread ID, and the new state of
the old thread (still runnable, interruptible sleep, etc.). For the disk
and network, we log when a thread blocks on a read request and
then when it resumes.

Display update: Android provides developers two main paths
to update the display: the View class in the framework library and
OpenGL to render display directly. Panappticon currently consid-
ers only the first path because OpenGL is mainly used for graphics
rendering in gaming applications. The concept of user transaction
in such gaming application is different from our definition in in-
teractive applications due to the use of animation, as discussed in
Section 5.

Additional information: In addition to all the information nec-
essary to capture causality between events, we also collected addi-
tional information to help us better understand the context of the
transactions. For example, we recorded the application that enters
and exits the foreground to distinguish applications users interact
with from system applications. This is done via changes to the Ac-
tivity framework class. Similarly, the kernel records the name of
each thread.

4.3 How do we construct relationship graph?
To identify user transactions based on event streams, we con-



Table 1: List of Events Captured
Category Event type Space Data field Description
User
inputs

UI_INPUT User null User’s input on the touch screen or hardware button
UI_KEY User User manipulation of the software keyboard

ENQUEUE_MSG User message_id, queue_id Enqueues and dequeues a message
Async DEQUEQUE_MSG time_to_dequeue with message_id on queue with queue_id

callbacks SUBMIT_ASYNC_TASK User task_id Submits/consumes a task to one of
CONSUME_ASYNC_TASK the pooled thread executors

IPC calls

BINDER_PRODUCE_ONEWAY

Kernel transaction_id

Caller sends arguments to the remote w/o blocking
BINDER_PRODUCE_TWOWAY Caller sends arguments to the remote and blocks

BINDER_REPLY Remote thread sends return value back to the caller
BINDER_CONSUME A remote thread begins execution

Locks: mutex, type_WAIT
Kernel

lock_id Block waiting for access to lock
semaphore, futex, type_WAKE lock_id Resume from block waiting for access to lock

and waitqueue type_NOTIFY lock_id, notify_pid Notify waiting thread to wakeup
CONTEXT_SWITCH Kernel old_pid, new_pid Context switch from process old_pid to new_pid

SOCK_BLOCK/RESUME Kernel null Blocks and resumes on socket waiting for connection
Resource DATAGRAM_BLOCK/RESUME Kernel null Blocks and resumes on socket waiting for UDP data

accounting STREAM_BLOCK/RESUME Kernel null Blocks and resumes on socket waiting for TCP data
IO_BLOCK/RESUME Kernel null Blocks and resumes on disk IO

Other dependency FORK Kernel parent_pid, child_pid Parent process forks child process
Display UI_INVALIDATE User null Invalidates the view, schedules display update
update UI_UPDATE User null Redraw the view

Additional THREAD_NAME Kernel t_pid, t_name Thread t_pid has name t_name
information ENTER/EXIT_FOREGROUND User null The current PID enters/exits being foreground app

struct directed acyclic graphs based on the relationships between
events. Each event entry in the trace is identified as a node in
the graph. The edges represent the relationships between pairs of
events.

Figure 4 illustrates the relationship graph constructed based on
the example trace in Listing 1. The map between node name and
event is also shown in the trace. The logic of the trace is described
in Section 2.

We identify two types of relationships: causal relationship and
temporal ordering.

Listing 1: Example trace of correlation graph

( I ) USER_INPUT p i d : 0
(EM1) ENQUEUE_MSG p i d : 0 message_ id : 1
(DM1) DEQUEUE_MSG p i d : 0 message_ id : 1
( ST1 ) SUBMIT_ASYNCTASK p i d : 0 t a s k _ i d : 1
( CT1 ) CONSUME_ASYNCTASK p i d : 1 t a s k _ i d : 1
(B) SOCK_BLOCK p i d : 1
(R) SOCK_RESUME p i d : 1
(EM2) ENQUEUE_MSG p i d : 1 message_ id : 2
(DM2) DEQUEUE_MSG p i d : 0 message_ id : 2
( INV ) UI_INVALIDATE p i d : 0
(UP) UI_UPDATE p i d : 0

Causal relationship: A relationship between two execution in-
tervals where the earlier interval triggers the latter one, as explained
in Section 3.1. It is represented by solid edges in the graph. For ex-
ample, the message enqueue event triggers the message dequeue
action. In other words, without the message enqueue operation,
the message dequeue operation would not exist. We identified the
following node pairs correlated with causality.
• ENQUEUE_MSG and DEQUEUE_MSG with the same

message_id.
• SUBMIT_ASYNCTASK and CONSUME_ASYNCTASK

with the same task_id.
• BINDER_PRODUCE or BINDER_REPLY events and

BINDER_CONSUME with the same transaction_id.
• Two nodes created by the FORK event: the node represent-

ing FORK event on the parent thread and the node representing the
initial execution on the child thread.

• UI_INVALIDATE and its closest UI_UPDATE within the
same thread.

Temporal ordering: A relationship between events within an
execution interval. It is represented by a dotted edge. For instance,
in the previous example, message 1 is enqueued while the call-
back method triggered by the input is executed. Similarly, an asyn-
chronous task is submitted during the execution of the dequeued
message 1.

One major challenge of temporal ordering is to determine when
to end an execution interval. If this is not correctly determined, all
events on the same thread will be spuriously connected, causing
user transactions to be mistakenly grouped. We place the threads
in Android applications in two categories and we use different ap-
proaches for each type.

• Task-based threads are the most common background
thread pattern in Android. These threads consume tasks from a
queue and block when the queue is empty. The end of each task
indicates the termination of an execution interval. For example, the
main UI thread in each application is a Looper thread that waits
for incoming messages and processes them. All the events happen-
ing when processing one message belong to one execution interval.
The same approach applies to Binder threads and asynchronous
task threads, which wait for new transactions and new tasks. We do
not explicitly instrument other background threads. Instead, events
from the locking primitives indicate the producer/consumer of a
task queue, allowing inference of execution intervals. The applica-
tion of this approach to applications using WebKit is explained in
Section 4.5.

• Worker threads may also be forked for one-time execu-
tion. Our approach automatically infers the execution interval in
this case.

We assume that no unrelated work is performed while process-
ing a particular task from a queue. A (probably misguided) pro-
grammer might have the handler for a particular message check an
unrelated condition and enqueue a message to handle it, leading
to a false dependency. In practice, this should be rare because the
Android APIs encourage good practices to maintain a responsive
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Figure 4: Illustrative example of relationship graph.

UI thread. None of the applications manually inspected to validate
Panappticon exhibited such false dependencies. Further, only (rare)
false dependencies leading to display updates would impact critical
path analysis.

Using the methodology above, we can infer separate user trans-
actions when they overlap. By further extracting the critical paths
from UI_INPUT and UI_UPDATE in each transaction, we can de-
rive the latency of each user-perceived transaction.

4.4 Resource accounting
The major research questions we use resource accounting to an-

swer are, “what are the causes of delay for transactions with no-
ticeable delay?” and “what can be done to speed them up?” To
this end, we analyze the resource use on the critical path for each
transaction in two steps.

First, we add the resource accounting-related kernel events into
the correlation graph to indicate the use of physical resources. In
particular, context switch events allow per-thread accounting of
CPU use. Similarly, network and disk IO access events allow per-
thread accounting of network and disk use. In additional to physical
resources, we also add synchronization events into the graph to rep-
resent the use of virtual resources. For example, a thread can block
on a mutex and wait for other threads to release it. Note that these
events are added to the graph based on temporal correlation.

Second, we analyzed the edges on the critical path to understand
the reason for its latency. All edges fall in the following categories.
• Edges that indicate the corresponding thread is running and

occupying the processor. For example, edges between any events
that occur between two context switches. Latency due to this type
of edge depends on processor speed.
• Edges that suggest the corresponding thread is blocked,

waiting for some resource. We further place different resources
in the following categories. (1) Physical resources such as net-
work, IO, and CPU. Waiting for CPU means the thread gets context
switched out when it is still eligible to run. (2) Virtual resources
such as locks or thread execution. For example, the latency be-
tween submission and consumption of an asynchronous task can
be due to the worker threads being occupied and therefore block-
ing the consumption of the new task. Approaches that shorten these
edges vary based on specific resource.
Thus, we can determine the time spent on each edge, allowing the
causes of long transactions to be determined and helping to identify
solutions.

4.5 Example graph of common programming
models

We now present an example graph generated from common pro-
gramming patterns in the Android framework. Both this pattern
and that in Figure 4 are commonly found in the traces gathered in
real-world use. Note that our approach is not limited to these pro-
gramming patterns.

WebView applications: The WebView class is a view that ren-
ders web pages using WebKit. It is extensively used by application
developers. Figure 5 shows an example of a user transaction that
loads a webpage the first time after an application launches. Note
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Figure 5: Example trace of application using WebView.

that for demonstration purpose, all the message enqueue nodes
within one execution interval are merged into the prior node. For
example, the dequeue of message 1 enqueues message 2 and hence
has an outgoing edge to the dequeue of message 2. After the We-
bViewCore thread dequeues message 2, it (1) forks the rendering
thread, which prepares different objects on the webpage for render-
ing. After preparation, (2) it enqueues a message to the WebView-
Core thread, which eventually triggers the display to update.

One major challenge we have for WebView-related applications
is that the rendering thread is a native task-based thread that we
do not instrument explicitly. Therefore, to infer the termination of
each execution interval, we leverage the kernel waitqueue locking
primitives. We observed that when the rendering thread does not
have a task to work on, it is blocked on a waitqueue until some other
thread puts a task in the queue and notifies it again. Accordingly,
we use the kernel event indicating blocking on the queue to infer
the end of execution interval and use the notify event to infer the
causal relationship between producer and consumer threads.

5. VALIDATION
This section describes our efforts to determine whether Panapp-

ticon correctly identifies user-perceived transactions and reports its
performance and energy overheads. All experiments are done on
Galaxy Nexus phones running Android 4.1.2.

5.1 Accuracy analysis
We examine the accuracy of Panappticon by evaluating ten ap-

plications, five synthetic benchmarks, and five open-source appli-
cations (see Table 2). These applications cover all the common
programming patterns we have identified, e.g., using AsyncTask or
worker threads. In these tests, we wish to (1) verify that Panapp-
ticon correctly links each UI input to the resulting display updates
and (2) confirm that the extracted relationship graphs are correct.

For the first test, we manually instrumented the applications to
measure the latencies between user input and the resulting display
update. Given the source code, we identify the methods that re-
ceive, process, and update the display in response to user input. By
comparing the timestamps recorded in these methods and measured
by Panappticon, we concluded that Panappticon correctly identified
and linked the inputs and display updates for all ten applications,
reporting the correct transaction latencies.

For the second test, we compared visualizations of the gener-
ated transaction relationship graphs with our understanding of the
source code. For example, we knew from studying the source if
an application used an asynchronous task or RPC call to perform
part of the transaction. The generated graphs were consistent with



Table 2: List of Applications

Type Name Description

Synthetic

Async Starts an AsyncTask after button
Task press and updates the display

Worker Forks a worker thread after button
Thread press and updates the display

Service Starts a remote service, make an IPC call,
and updates the display

WebView Loads a webpage using
standard Android API

Animation
Starts an AsyncTask while

displays the loading animation, terminates
the animation after the task is done

CrossWords Loads a cross word game,
displays solution based on user inputs

ReadForSpeed Downloads text and
Open displays it based on timer
source Android browser The default browser on Android

K9 mail Mail client
NPR news News reading application

our expectations, indicating that Panappticon extracted the correct
graphs.

Although Panappticon performs well on our intended workloads,
it cannot handle all applications and behaviors. We describe some
of its limitations here.

• Approach limitation: Panappticon does not track data or
control dependencies directly, but relies on instrumented system
or platform libraries that provide support for high-level program-
ming paradigms like task-queues and semaphores. Applications
that implement their own coordination primitives or use lockless
synchronization cannot be tracked by Panappticon. Tracking data
dependencies requires techniques like taint tracking [4] that incur
overheads too high for online use.

Our definition of user-perceived transaction is not appropriate
for animated applications like games. Our definition tries to cap-
ture the time a user spends waiting for an expected result from the
input. Animated results manifest over many frames and may be
modified by later inputs. As a result, we exclude animated transac-
tions (like most games) from the experiment, as explained in Sec-
tion 6. Note that according to a recent study, games account for
15% of published applications [5].
• Instrumentation limitation: Our specific implementation

for Android assumes that background worker threads are task-
driven. We modified the common Android-provided task-driven
primitives like the Looper, AsyncTask, and Executor classes to
record the start and end of each task. While this assumption holds
true for most interactive applications, it can miss work done on na-
tive, non-Java background threads.

One particular example, the WebKit library used to display web
pages, is quite prevalent so we use kernel primitives to infer its
task intervals as described in Section 4. WebKit is the only such li-
brary we found in our traces, but other less-frequently used libraries
might exist. Panappticon would miss them unless the implementa-
tion were extended.

5.2 Overhead analysis
We now report the performance and energy consumption over-

head of Panappticon.
Performance: The performance overhead of Panappticon stems

mainly from the CPU cycles used to log each event and the memory
used to store the logs (reducing memory available for the Linux file
cache and Android application cache). The CPU overhead is min-
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Figure 6: Overhead of Panappticon.

imized by eliminating locking in the logging path (e.g., by using
per-CPU log buffers in the kernel) and memory overhead is mini-
mized by fixing the buffer size to 30 MB in the kernel and 15 MB
in userspace.

To evaluate the overhead, we compared user transaction laten-
cies on a system with Panappticon to one without. To determine
latencies on the system without Panappticon, we manually instru-
mented several open source applications to directly record transac-
tion lengths. The experiment was conducted on two Galaxy Nexus
phones. As shown in Figure 6, the average overhead of Panappti-
con is 6.1%.

Battery: The energy consumption of Panappticon is mainly due
to uploading the logs to our server (300 MB/day for our heaviest
user). When WiFi is not available, Panappticon saves data to non-
volatile storage and defers the transmission until the phone is charg-
ing and WiFi is available. No users reported a noticeable change in
battery life.

6. CASE STUDIES FROM REAL-WORLD
TRACES

We now present the findings of our user study. We first ex-
plain the study design and then proceed through three case studies
of real-world traces, showing three specific findings uncovered by
Panappticon that may interest application developers, system de-
signers, and smartphone manufacturers.

6.1 Experimental setup
14 students from the University of Michigan volunteered to run

Panappticon on their smartphones. We selected only regular, long-
time smartphone users in the interest of observing representative
smartphone user behavior. Galaxy Nexus phones [6] were used,
which have 1.2 GHz dual-core processors.

The study had two major goals. (1) Identify the causes of trans-
actions of noticeable length (i.e., >50–100 ms). This goal can be
achieved by analyzing the resource usage for each transaction. (2)
Understand the impact of architectural differences on user transac-
tions, e.g., changing the number of CPU cores and the impact of
the DVFS (Dynamic Voltage and Frequency Scaling) policy. To
achieve this, we periodically disabled one core on the device and
changed enabled/disabled DVFS. Specifically, we ran a daemon
that changed the number of cores and DVFS status every 10 min-
utes, randomly switching between the four possible configurations.
To avoid degrading user experience during intensive workloads, the
configuration was changed only when CPU utilization was below
5%.

Table 3 provides basic information about the deployment. We
detected 104,588 transactions in total. Among them, 88,656 trans-



Table 3: Deployment Statistics
Start date Oct. 31, 2012

Finish date Nov. 30, 2012
Application count 189
Total transactions 104,588
Without animation 88,656

With animation 15,932

Table 4: Resource Accounting Statistics for Sample Transactions
from Reddit News

Total latency(s) Network block(s) IO block(s) Waiting
for CPU(s)

3.78 0.98 0 1.39
2.35 0.42 0.02 0.93
1.54 0.23 0 0.89
1.27 0.15 0 0.33

actions do not involve animation. Figure 8 presents the cumulative
distribution of latencies for these transactions. Transactions with-
out animation last at most 38.60 seconds with only 2% of transac-
tions lasting longer than 1 second. As explained in Section 5, we
focus on non-animation transactions in the next subsection because
the lengths of animation transactions are related to user satisfaction
in a complex way.

6.2 Case study one: analysis of long transac-
tions for applications

One major goal of Panappticon is to help application developers
identify user transactions that may be noticeably and annoyingly
long and help expose potential fixes. We now describe how Panapp-
ticon helped identify a performance inefficiency in Reddit News, a
popular application for browsing the website reddit.com.

Reddit News is a popular closed-source application on the An-
droid Market that has been downloaded millions of times. Panapp-
ticon revealed that its produces many transactions longer than one
second. Table 4 shows the resource accounting statistics generated
from Panappticon for four example transactions. “Network” and
“IO” block columns show the time spent blocked waiting for those
resources on the critical path. “Waiting for CPU” shows the time
spent waiting for the CPU while preempted. The rest of the trans-
action is spent running on the CPU.

The time spent in preemption is the dominant reason for the high
latency and suggests heavy CPU contention during transactions. A
deeper look at the critical paths of these transactions reveals two
things: (1) the preempting threads that consume the most CPU
time during these transactions are the system threads responsible
for writing to the emulated SD card and (2) the preemption is trig-
gered by the Reddit News thread after each network block. Longer
network blocks trigger longer preemption times. Figure 7 shows
one such transaction trace and the CPU usage from the contending
system thread. We believe the Reddit News thread is fetching im-
ages from the network and caching them to disk immediately after
download.

Although saving to the SD card does not block the thread di-
rectly, the system thread in charge of SD card writing causes heavy
CPU contention with the thread on the critical path. Why does the
thread writing to the SD card start working during a user transac-
tion? A deeper investigation into the writing policy reveals that
although the write back activity happens asynchronously with the
write system call, it is triggered every time the write buffer fills.
The images downloaded by Reddit News range from 15KB to 3MB
while the default buffer size is 8KB. This means that every time an
image is downloaded, the SD card thread immediately begins writ-
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Figure 8: Distribution of non-animation transaction latencies.
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Figure 9: Distributions of user transaction latency for different core
count and DVFS configurations. The zoomed-in inset plot high-
lights the differences in the upper percentiles.

ing, causing resource contention with the critical path thread. We
do not have access to the source code of the SD card driver, but
hypothesize that the intensive CPU load results from driver ineffi-
ciencies. Others have noted similar effects [7].

Two potential solutions would reduce contention and thus im-
prove user-perceived latency. The first, making the driver code
faster, would address the root cause, but is not an option for ap-
plication developers and may be intractable even for the driver de-
velopers. The second is to defer image caching until after display.

6.3 Case study two: impact of DVFS policy on
user transaction latency

The second case study illustrates how Panappticon can help sys-
tem designers by determining the impact on user transaction length
of a specific system setting, activation or deactivation of dynamic
voltage and frequency scaling (DVFS). DVFS attempts to reduce
energy consumption by reducing processor voltage and frequency
to the lowest point still providing the needed throughput. This strat-
egy often hurts low-throughput, latency-sensitive tasks that do not
trigger the faster DFVS states. The Android DVFS policy, inter-
active, tries to address this issue, but as we show, only partially
succeeds.

Figure 9 shows the empirical distributions of user transaction la-
tencies for four configurations: DVFS on (the interactive gover-
nor) and off (the highest frequency, 1.2 GHz) with one and two
cores available. In both cases, transaction latencies are higher with
DVFS enabled. The difference is negligible for short transactions
(< 20 ms), but significant for longer transactions. In dual-core
mode, the difference is 170 ms at the 96th-percentile and for single-
core, 517 ms at the 98th. DVFS negatively and noticeably impacts
user transaction latency.

A close look at the interactive governor policy reveals the cause.
The policy matches the CPU frequency to the utilization over the
prior 20 ms, but includes three optimizations for latency-sensitive
tasks. First, the frequency is boosted to 700 MHz on each user in-
put, e.g., touchscreen press. Second, it is similarly boosted if the
utilization is over 85% in the first 20 ms after leaving the CPU idle
state. Third, a frequency is held at an increased level for at least
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Figure 7: Transaction trace for Reddit News showing the main thread contending for the CPU with system-owned threads used to control
the emulated SD card. For the Reddit News thread, time spent using the CPU is shown in the first row and time waiting for the CPU in the
second row. Waiting until after the display is updated to cache the downloaded data to the SD card would reduce this contention and shorten
the user-perceived transaction latency.
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paring latency distributions with
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Figure 11: Transaction illus-
trating the reason for the poor
behavior of the DVFS policy.
The CPU use is interleaved with
disk blocks and thus although
the transaction includes signifi-
cant CPU time, the utilization is
low and the DVFS policy keeps
the CPU frequency well below
maximum.

60 ms before being lowered. We thus hypothesize that short trans-
actions are slower because the initial boost is to 700 MHz, not the
full 1.2 GHz. Longer transactions are slower because the frequency
often drops after 60 ms.

The Q–Q plot [8] comparing the distributions (Figure 10) sup-
ports this hypothesis. Below 60 ms, the distributions are similar
(DVFS off is slightly faster below 10 ms), but above, DVFS is much
slower, with latencies averaging 1.75× higher.

As shown in Figure 11, lengthy user transactions include periods
of blocking on network and disk interleaved with CPU use. Thus,
despite significant CPU use, the utilization is low and after 60 ms,
the interactive governor drops the frequency. The transaction fin-
ishes at the lower speed, increasing latency. For workloads with
substantial time spent blocking on network and disk, CPU utiliza-
tion is a poor metric for frequency control.

Our goal is demonstrating the value of Panappticon, not fixing
the interactive DVFS policy. However, we offer two possible so-
lutions for future investigation. First, increase the default 60 ms
timeout for dropping the frequency. This is simple (that parameter
is already configurable), but would hurt energy consumption. Sec-
ond, include the time blocked on disk or network when computing
CPU utilization for the purpose of DVFS control. This keeps the
utilization, and thus frequency, high while tasks are in progress. Of
course, the idea is incomplete—false positives due to, for example,
intentionally blocked network threads would hurt energy efficiency.

One could argue this behavior is correct: that DVFS policies
intentionally trade performance for energy. However, our results
show that CPU energy consumption is dominated by other com-

Table 5: Power and Energy Consumption for Different Frequency
Levels for Galaxy Nexus

Frequency CPU Total Normalized est
Power (mW) Power (mW) energy (X)

350 220 820 2.64
700 610 1260 1.46
920 1000 1650 1.16
1200 1600 2260 1

ponents, so decreasing transaction latencies reduces overall en-
ergy consumption. Table 5 shows the power consumption for dif-
ferent frequency states, measured on a Galaxy Nexus running a
synthetic workload to maintain 100% utilization. CPU energy ef-
ficiency increases with decreasing frequency, but overall system
energy efficiency decreases. In summary, for current processors
DVFS will generally improve energy efficiency for IO- or memory-
bound workloads, but hurts for CPU-bound tasks, such as gaming.
A DVFS policy taking this into account could improve both energy
efficiency and user-perceived latency.

6.4 Case study three: impact of hardware re-
source on user transactions

The third and final case study shows how Panappticon can be
used to study the impacts of hardware design choices on user trans-
action latencies. To this end, we consider the following question:
how does CPU core count influence the latencies of user transac-
tions?

To answer the question, we compare the distributions of user
transaction latencies for single-core and dual-core configurations.
To eliminate the effect of DVFS, we consider data gathered with
DVFS disabled. As shown in Figure 9, for short transactions (be-
low 2 ms), an additional core reduces transaction time. However,
for longer transactions, the additional core does not significantly
change transaction time, on average. This suggests that longer
transactions are typically not-parallelized, CPU-bound workloads.
OpenGL applications such as games were not studied, and might
yield different results.

This finding indicates that many applications, and almost all of
those we encountered, are not designed for efficient parallel execu-
tion, even when the transactions latencies are high enough to justify
it. Although the applications use multiple threads, usually only a
single thread is active. Determining if the applications are paral-
lelizable is beyond the scope of Panappticon, but we can offer two
suggestions.

First, Panappticon can identify applications with slow, CPU-
bound, and non-parallelized execution. Developers of these appli-
cations should consider parallelizing them. With Panappticon, it is
easy to focus on the sections of code that would provide the most
benefit if parallelized.

Second, hardware manufacturers should continue to optimize for



single-threaded execution. Many are already doing this, for exam-
ple, allowing additional cores to be turned off when not in use or
providing a single core that operates at higher speed when the oth-
ers are turned off. Panappticon has shown that these hardware/OS
features remain appropriate for many real user transactions, and can
be used to quantify their impact.

7. RELATED WORK
This section summarizes other work targeting similar problems:

monitoring and debugging of user transitions and the characteriza-
tion of mobile application performance in real-world use.

Performance monitoring and debugging for user transac-
tions or request: Prior work on performance monitoring and de-
bugging of user transactions falls into the two following categories.

The first category uses developers’ knowledge of application se-
mantics to identify transactions [9, 10]. Magpie [9] character-
izes the individual requests handled by Windows-based servers.
Developer-provided event semantics are used to join the logged
events into transactions. In contrast, Panappticon does not require
such semantics, reducing developer burden. Further, our focus on
mobile platforms, not servers, leads to a different system design.

LagHunter [10] is a debugging tool that identifies perceivable
performance bugs. Developers identify landmark methods, usu-
ally those handling UI inputs, for special instrumentation by which
the call stacks are tracked. This approach is unsuitable for multi-
threaded, asynchronous systems like Android, because it only al-
lows tracking of synchronized UI event handling.

In contrast, the second category does not require developer input.
AppInsight [2] instruments application binaries to identify the crit-
ical execution path in user transactions. It uses causality between
cross-thread work units to trace execution, as does Panappticon.
However, it does not monitor events from the kernel or other pro-
cesses, and thus cannot reveal inefficiencies due to platform code
or poor interactions between applications.

Monitoring mobile applications during typical use: Panappti-
con is intended to help application and system developers identify
bugs and locate inefficiencies in production on real users’ phones,
not just in the lab. Several tools exist for similar purposes.

The crash reports collected by iOS, Android, and Windows are of
limited use, because the triggering conditions, e.g., an unexpected
network environment, are not included and slow performance is
never reported. Flurry [11] reports more detailed data like applica-
tion launches and session lengths, but not with sufficient granularity
to detect performance issues. Several tools collect traces for differ-
ent purposes, e.g., detecting inefficient use of energy (e.g., Pow-
erTutor [12], Carat [13], and ADEL [14]) and network bandwidth
(e.g, MobiPerf [15]), and are orthogonal to Panappticon.

Characterization of mobile workloads performance: Panapp-
ticon should reveal the impact of architectural changes on user-
perceived performance, helping guide hardware and operating sys-
tem designers. Gutierrez et al. [16] developed a smartphone bench-
mark suite by characterizing representative smartphone applica-
tions. They found that smartphone applications have higher in-
struction cache miss rates than traditional SPEC benchmarks, and
suggested increasing the cache size. In contrast, Panappticon is de-
signed to study real workloads in the field, not summarizing bench-
marks, and attempts to measure user-perceived performance explic-
itly.

8. CONCLUSION
This paper describes Panappticon, a system that records

application-related events in operating system and framework li-
braries, correlates related events, and identifies individual user-
perceived transactions. Panappticon determines the duration and
critical path of each transaction, helping to make the root causes of
performance bottlenecks clear.

We have described case studies demonstrating that Panappticon
provides information that can be used to identify areas for improve-
ment in smartphone applications, platforms, operating systems, and
hardware. First, it can help identify application design inefficien-
cies, even when the root causes are subtle. Second, it can help sys-
tem developers understand the impact of policy design decisions
on user transactions (e.g., DVFS policy), allowing the designs to
be optimized. Third, Panappticon can help smartphone hardware
designers to understand the impact of architectural decisions on
user-perceived transaction latencies (e.g., the impact of adding a
CPU core), helping to guide design decisions.

The Panappticon source code and user study data are available at
http://ziyang.eecs.umich.edu/projects/panappticon/.
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