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ABSTRACT
This paper presents a new approach for power reduction

by taking a global, software-centric view. It analyzes the

sources of power consumption: tasks that require services

from hardware components. When a component is not used

by any task, it can enter a sleeping state to save power.

Operating systems have detailed information about tasks;

therefore, OS is the best place for power reduction. Our

technique is effective in identifying hardware idleness and

shutting down unused components. We implement this tech-

nique in Linux and show that it can save more than 50%

power compared to traditional hardware-centric shutdown

techniques.

1. INTRODUCTION

Low-power design is increasingly important because of the

popularity of portable devices and the concern of environ-

mental impact of electronic systems [16]. Due to rapid

advance in hardware, modern systems are supporting wide

ranges of applications. Specifically, computers and some

PDA’s deploy operating systems, such as Windows, Palm

OS and Linux to manage resources. This paper focuses on

such systems.

In many systems, some hardware components (also called

devices) are not always used; workload variations make adap-

tive power reduction possible. These techniques reduce power

consumption according to the requests generated from run-

ning tasks. If no task requires a particular device, the

device is idle and can be shut down to enter a low-power

low-performance sleeping state (also called stand-by state).

When a running task requires this device, it is woken up and

enters a high-power high-performance working state. Dy-

namically determining power states according to workloads

is called dynamic power management (DPM) [3]. Power

managers (PM) determine power state transitions accord-

ing to their shutdown rules (also called policies).

Power management can be generalized for more than two

power states [5]; each state has different performance and

power consumption. Therefore, power management includes

dynamic voltage setting [7] and variable clock speeds [14].

Setting voltages or clock speeds is equivalent to choosing

power states. We use “power management” for all tech-

niques that dynamically reduce power based on workloads.

For simplicity of the following presentation, we consider only

two power states: working and sleeping.

Power management in commercial products is mainly based

on timeout— shutting down a device when it has been idle

long enough. Most research activities take a hardware-centric

view; they observe past requests at the target device to pre-

dict future idleness [3] [8] [11]. Some schemes use stochas-

tic models due to the lack of information to distinguish re-

questers [4] [17] [13]. None of these approaches makes

distinction on the request source; they implicitly assume

that there exists one requester. In many systems, however,

requests may be generated by multiple requesters. For ex-

ample, hard disk IO’s may be generated by a compiler, a text

editor, or a file transfer program (ftp). Similarly, network

transmission requests can come from an Internet browser or

a telnet session.

Our main contribution is to introduce a power reduction

technique in operating systems (OS) with an accurate system-

level model of requesters: concurrently running tasks. Two

tasks are concurrent if one starts before the other termi-

nates. Detailed information about tasks is available in OS

kernel. Running tasks may terminate and new tasks may be

created. After a task terminates, it will not generate new

requests. Classifying requests according to their sources pro-

vides more information to power managers about future re-

quests. We call this approach task-based power management

(TBPM). We implement it in Linux on a single-processor

computer for controlling the power states of a hard disk
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Figure 1: process states

drive (HDD) and a network interface card (NIC). Experi-

ments show that our approach saves more than 50% power

compared to traditional power reduction techniques.

2. OS-DIRECTED POWER MANAGEMENT

OS-directed power management (OSPM) can be divided

into two categories: adjusting CPU clock speed [7] [6]

[10] [14] [18], or putting devices into sleeping states [3] [4]

[8] [13]. This paper focuses on the second problem.

In 1997, Advanced Configuration and Power Interface (ACPI)

[1] was proposed as a standard protocol between OS and

hardware for saving power. Based on ACPI, Microsoft’s On-

Now [12] and ACPI4Linux [2] support power management

in operating systems.

All power management schemes proposed so far are based

solely on the observation of requests at the target device;

they do not exploit extra knowledge available from the OS.

We call this hardware-centric approach device-level power

management (DLPM). At the device level, information about

individual requesters is unavailable. Therefore, all requests

are assumed to come from a “black-box” requester. DLPM

has three major drawbacks. First, different tasks can have

substantially different request patterns; DLPM cannot make

decisions based on task-specific patterns. Second, tasks can

be created and terminated. If a device is used by only one

task, it can be shut down immediately after the task ter-

minates. DLPM usually needs to wait unnecessarily even

though no requester exists. Third, some tasks may have

tight performance requirements; DLPM has no information

to meet task-specific performance constraints.

In contrast, TBPM is a software-centric approach; it uses the

knowledge available in operating systems for power manage-

ment by dividing requests according to tasks, which corre-

spond to OS processes. A process can be in one of several

states such as running and ready, as shown in Figure 1 [15].

The terms process, requester and task are used interchange-

ably in this article.

Figure 2 is an example when TBPM outperforms the time-

out approach. Suppose there are two processes using a net-

work transmitter: telnet and ftp before t1. No process

uses the transmitter afterwards; consequently, it can sleep

at t1 to save power. However, timeout-based DPM waits for

τ (the timeout value), and keeps the device in the working

state for τ unnecessarily.

3. TASK-BASED POWER MANAGEMENT

TBPM has better requester models because it can deal with

four problems that device drivers cannot handle:

1. Requests are generated by multiple requesters (tasks).

TBPM uses the knowledge from OS kernel to separate

tasks.

2. Tasks are created, executed, and terminated. Device

drivers have no knowledge of the existence of multiple

tasks and their termination.

3. Tasks have different characteristics in device utiliza-

tion. For example, a compiler and a text editor have

different request patterns.

4. A task can generate requests only when it is in the

running state; namely, it occupies CPU time. TBPM

considers the CPU time of tasks while deciding power

state changes.

3.1 Data Structures

TBPM uses a two-dimensional data structure called the

device-requester utilization matrix, U. Additionally, it cre-

ates a vector called the processor utilization vector, P. The

following paragraphs describe these data structures, the up-

date rules, and how to shut down devices.

MatrixU stores the relation between devices and requesters.

U(d, r) is an element of U; it represents the utilization of

device d by requester r. Figure 3 shows a utilization matrix.

The number of devices is system-dependent; the number of

requesters is unlimited. When a new requester is created,

one column is allocated; when a requester terminates, its

column is deleted. This figure shows an example of two de-

vices (HDD and NIC) and three requesters (gcc, emacs, and

netscape). Since gcc and emacs do not send any network

packets, their utilization for NIC is zero. P is the processor

utilization for each process; P (r) represents the percentage

of processor time used by requester r.

3.2 Updating U, P

time

telnet
ftp

t1 t2

τ

Figure 2: example when TBPM outperforms time-

out
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Figure 3: utilization matrix (top) and an example

An element of matrix U, U(d, r), is defined as the reciprocal

of the average time between requests (TBR) for device d by

requester r. In practice, it is not advisable to compute TBR

as the running average of all times between requests since

the beginning of a task. A discounted average, where the

immediate past is weighted more than the remote past, is a

more effective way to estimate TBR [8]. U(d, r) and TBR

after n requests are obtained by

TBRn = a · TBR+ (1− a) · TBRn−1

U(d, r) = 1
TBRn

(1)

where TBR is the interval between the last two requests and

0 < a < 1 is the discount factor. When a = 0, TBRn is a

constant using the first TBR; when a = 1, only the last TBR

is used. Experiments show that a value of a between 0.2 and

0.8 produces satisfactory results while 0.5 is suggested in [8].

P (r) is the percentage of CPU time executing task r, or

P (r) =
CPUTime(r)∑

∀ requester ρ
CPUTime(ρ)

(2)

P is updated based on a sliding window scheme, instead

of discounted average, for two reasons. First, when a pro-

cess is IO-bounded, generating bursty requests, TBR will be

dominated by how fast a device can serve requests. While

this properly shows that the process has high device uti-

lization, it does not capture the percentage of running time

this process takes. Second, when a process generates bursty

IO requests, it stays in the running state (Figure 1) only

momentarily each time it is selected by the OS scheduler.

Discounted average cannot obtain an appropriate estima-

tion of the percentage of CPU time taken by this process.

Consequently, a sliding window is used to compute the CPU

time distributed among processes. The window size should
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Figure 4: power and window sizes (100% for 5min)

be large enough to sample the execution of all processes and

short enough to quickly reflect workload variations. Figure

4 shows relative power consumption of a hard disk for differ-

ent window sizes (the experimental setup will be described

in Section 4); the power is normalized to one for a window

size of five minutes. We use two minutes as the window size

for a balance between adaptation speed and accuracy.

3.3 Shutdown Condition

The key decision made by the power manager is when to

shut down a device. Changing power states takes time and

extra energy. A quantitative measure of shutdown cost is

the break-even time, Tbe [3]. Tbe is the minimum length

of an idle period to amortize the power cost of shutting

down a device. Tbe is a device characteristic independent

of workloads. Let Pw and Ps be the power consumption in

the working and the sleeping states. Tsd and Twu are the

time required to shut down and wake up the device. Esd
and Ewu are the energy for shutdown and wakeup. Tbe can

be obtained by this formula: Pw · Tbe = Esd + Ewu + Ps ·
(Tbe − Tsd − Twu) or:

Tbe =
Esd + Ewu − Ps(Tsd + Twu)

Pw − Ps (3)

TBPM shuts down a device d if its total utilization, U(d),

becomes smaller than a threshold; that is, when the follow-

ing condition is true

U(d) =
∑

∀ requester r
U(d, r)× P (r) < th (4)

U(d) is the request rate for device d created by all tasks. To

compute total utilization, U(d, r) is multiplied P (r), because

a task generates requests only when it is running on the

CPU.

We choose th to be k/Tbe. When k = 1, the shutdown con-

dition has an intuitive interpretation. If the overall request

rate is larger than 1/Tbe, the expected time between requests

is smaller than Tbe and a shutdown is not beneficial. In prac-
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Figure 5: power and k values (100 % for k = 1)

tice, k may be different from one. A larger k makes the pol-

icy more aggressive since a device is shut down even though

its utilization is still high. Because of our performance rule

(3.4), we can choose k larger than one without significantly

degrading performance. Figure 5 shows the relative power

consumption of a hard disk for different k values; the power

for k = 1 is 100%. It shows that the power consumption is

larger for smaller k; when k � 1, the performance rule will

prevent TBPM from shutting down a device too often and

leads to the same power saving. We choose 2 for k in our

experiments.

3.4 Performance Consideration

TBPM is designed to save power without compromising per-

formance. We target interactive systems such as personal

computers. The performance metrics are related to user-

perceived interactivity; interactivity is affected by waiting.

While power managers cannot change hardware parameters

such as Tsd and Twu, they can determine how often user-

perceived waiting occurs. If a PM issues many shutdown

commands within a short time period and dramatically in-

creases response time, users will perceive a drastic degrada-

tion in interactivity. Furthermore, the users may react to

obtain response and cause a steep increase in system loads.

This “positive feedback” due to multiple shutdowns within

a short period must be avoided. Previously proposed power

management policies focused mainly on power saving with-

out providing any performance guarantee in worst-case be-

havior [11].

Our approach guarantees that no more than two consecutive

shutdowns are issued within Tw. Performance guarantee is

achieved by preventing shutting down a device if a shutdown

was issued less than Tw seconds ago. Because TBPM is

capable of detecting long idle periods more accurately, this

rule has only negligible effect on power.

3.5 TBPM Procedure

Figure 6 pictorially illustrates TBPM. This figure shows

how power management is integrated into process manage-

ment compared to Figure 1. A requester column is allocated

update P(r)

allocate column delete column

update U(d, r)

runningready

waiting

new terminated

update P(r)

Figure 6: updating U(d, r) and P (r)

whenever a new task is created; the column is deleted when

the task terminates. Utilization is initially set to zero; then

it is updated whenever a request is issued. The power man-

ager evaluates the utilization in the process scheduler. The

total device utilization is the sum of utilization weighted by

CPU time of each requester.

TBPM behaves consistently under heavy or light workloads.

For a lightly-loaded system running the idle process mostly,

sparse requests will not cause the power manager to keep

a device in the working state too long since P (r) is small

for this requester. When the system has heavy workloads

but it does not use a device frequently, the power manager

will shut down the device soon after it is used since U(d) is

small. When the system is running tasks that heavily use

a device, TBPM will keep the device in the working state.

Therefore, TBPM is robust in all cases.

4. IMPLEMENTATION AND EXPERIMENTS

4.1 Implementation Platform

We conduct our experiment on a personal computer. We

implement TBPM in Linux kernel V 2.2.5, Redhat distribu-

tion 6.0, to control the power states of a hard disk and a

network transmitter. We focus on transmission because (1)

a transmitter consumes much more power than a receiver,

particularly in wireless communication (2) network receivers

have to listen to incoming signals and cannot be completely

shut down.

We modify the kernel and related device drivers in Linux. It

is a fully functional computer with X Window and network-

ing; we use it for daily tasks such as developing TBPM code,

editing texts, and surfing the Internet. This computer is

configured as a typical client. Server daemons, such as http

server and Internet news server are turned off; cron tasks

are scheduled at lower frequencies. Power state changes in

an HDD and an NIC are emulated with two states: one

working state and one sleeping state.

For evaluating the effectiveness of our approach and com-

paring it with other power management policies, we emulate

power-state changes without actually setting the hardware

power states. The implementation maintains a set of vari-
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ables that record when a particular policy shuts down a

device and when the device is woken up. Therefore, we can

run multiple policies for identical workloads generated by

real users. These variables are recorded every ten minutes

on a second hard disk so data collection does not interfere

with normal operation.

Table 1 shows the parameters of the devices in our exper-

iments. They are typical for commercial devices: a 2.5”

mobile hard disk (such as Fujitsu 2043AT) and a wireless

Ethernet card (such as WaveLAN 8484411481).

4.2 Power Management Overhead

Column allocation for new processes in the utilization ma-

trix, U, can be implemented in a fixed-size circular queue

to avoid the overhead of dynamic memory allocation. The

size should be large enough to accommodate all concurrent

processes. We use a 64-column matrix because there are

usually fewer than 64 processes on a personal computer.

When more processes are running, columns are assigned by

the least-recently-used (LRU) rule [15]. The processor uti-

lization vector, P, also contains 64 elements. In total, less

than 160 KB memory is used; it is allocated at the unswap-

pable memory region to avoid extra disk IO’s. There is no

human-perceivable performance degradation.

4.3 Experimental Results

We compare TBPM with four device-level power manage-

ment policies (1) exponential regression relationship between

two adjacent idle periods [8] (2) event-driven semi-Markov

model [17] (3) 2-competitive policy which sets the timeout

value (τ ) to Tbe [9] (4) timeout with one and two minutes

(τ = 60, 120). One minute is the minimum unit in many

user-controlled power management settings, such the Con-

trol Panel in Microsoft Windows. Table 2 compares these

four policies on a typical workday for ten hours. Tw is thirty

seconds for the performance guarantee in TBPM.

In this table, Ts is the time in the sleeping state (sec); Nd is

the number of shutdowns; Sl is the length of the longest se-

quence that causes delay every thirty seconds (value of Tw)

or shorter; Pa is the average power (W); R is the power con-

sumption relative to TBPM. While most power management

researchers concentrate on the average power (Pa) only, we

are also concerned about the number of state changes (Nd)

because each state change has associated overhead.

Device Pw Ps Twu Tsd Ewu Esd

HDD 0.95 0.13 1.61 0.63 4.39 0.36

NIC 1.43 0.05 0.24 0.10 0.50 0.05

Table 1: hardware parameters. unit: W, sec, J

Device Policy Ts Nd Sl Pa R

TBPM 23641 181 0 0.435 1.00

[8] 17856 325 2 0.586 1.35

HDD [17] 22828 581 9 0.507 1.16

[9] 22552 477 3 0.499 1.15

τ = 60 16551 101 0 0.586 1.35

τ = 120 12347 64 0 0.677 1.56

TBPM 29121 179 0 0.316 1.00

[8] 22411 361 3 0.576 1.82

NIC [17] 27155 597 11 0.398 1.26

[9] 28492 457 8 0.345 1.09

τ = 60 20789 99 0 0.640 2.00

τ = 120 16257 48 0 0.808 2.55

Table 2: policy comparison

Three policies ( [8] and τ = 60, 120) have much higher av-

erage power consumption (Pa). The “pre-wakeup” scheme

in [8] wakes up a device before a request arrives; there-

fore, Ts is much smaller. Also, 60 and 120 seconds are too

long to determine idleness. They waste power in the first

60 (or 120) seconds of an idle period. The other policies

(TBPM, [9] and [17]) consume less power. Among them,

TBPM has smaller numbers of shutdowns because TBPM

can find long idle periods more accurately. The performance

rule described in 3.4 prevents two or more shutdown com-

mands within Tw seconds; consequently, users do not per-

ceive repetitive delays in a short time period. For each pol-

icy, Sl indicates how long a user may need to wait repeti-

tively. For example, a user needs to wait as many as 9 times

for HDD within four and half minutes in [17]; each waiting

can be longer than two seconds (Tsd + Twu).

Although performance rules can be applied to any power

management policy, the policy has to predict long idle peri-

ods with high accuracy. Otherwise, performance rules will

keep devices in their working states unnecessarily and waste

power. TBPM, with additional information from OS kernel,

finds long idle periods more accurately. Therefore, TBPM

is essential for using a performance rule to reduce power

consumption without compromising user satisfaction.

4.4 Qualitative Analysis

Regression relationship in [8] can cause multiple shutdowns

within a short time period and frustrate users. Consider

Figure 7; each block indicates a request. A long idle period,

such as a lunch break, is followed by bursty requests, such as

working after the lunch. Because of the long idle period, the

regression policy predicts that new idle periods will also be

long and shut down the device repetitively. This policy shuts

down the device for the first several idle periods and creates

depressing user experience. In contrast, TBPM does not

shut down any device too frequently; therefore, it provides

satisfactory performance in the worst cases. It refrains from
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Figure 7: TBPM (top) does not cause repetitive

shutdowns. Each block indicates a request.

shutting down the device again within Tw after the previous

shutdown. During this time, TBPM quickly updates P and

U to adapt for the change of workloads. Therefore, TBPM

is superior to [8] when workloads suddenly increase.

In [4] [13] [17], requests are assumed to follow certain

probability distributions. TBPM, on the other hand, makes

no assumption about request patterns. In fact, it is designed

to handle dramatically varying patterns; TBPM learns re-

quest patterns by updating P and U; hence, TBPM is more

flexible.

TBPM fruitfully exploits the additional knowledge available

in OS about request sources. TBPM achieves a better trade-

off between power and performance than traditional DLPM,

without significant overhead in kernel. Performance penal-

ties are tightly controlled not only in average, but also in

worst-case conditions.

5. CONCLUSIONS

Traditional device-level power management assumes a single

“black-box” requester even though requests may be gener-

ated by concurrently running tasks. The box is usually char-

acterized by its statistical parameters; we claim that such

information is insufficient. In this paper, we have intro-

duced task-based power management (TBPM) that “opens

the box” and classifies requests by their tasks using the in-

formation in OS kernel. TBPM computes device utiliza-

tion of each task and shuts down a device when the over-

all utilization is low. We implement this policy in Linux

and demonstrate that, when compared to device-level pol-

icy, TBPM produces better power saving, with smaller, and

well-controlled performance penalty.
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