
Temperature-Aware Microarchitecture
�
Kevin Skadron,

�
Mircea R. Stan,

�
Wei Huang,

�
Sivakumar Velusamy,�

Karthik Sankaranarayanan, and
�
David Tarjan ��

Dept. of Computer Science, � Dept. of Electrical and Computer Engineering
University of Virginia, Charlottesville, VA�

skadron,siva,karthick,dtarjan � @cs.virginia.edu,
�
mircea,wh6p � @virginia.edu

Copyright c
�

2003 IEEE. Published in the Proceedings of the 30th International Symposium on Computer Architecure, June 9–11, 2003 in San Diego, California, USA. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

Abstract

With power density and hence cooling costs rising exponen-
tially, processor packaging can no longer be designed for the worst
case, and there is an urgent need for runtime processor-level tech-
niques that can regulate operating temperature when the pack-
age’s capacity is exceeded. Evaluating such techniques, however,
requires a thermal model that is practical for architectural studies.

This paper describes HotSpot, an accurate yet fast model based
on an equivalent circuit of thermal resistances and capacitances
that correspond to microarchitecture blocks and essential aspects
of the thermal package. Validation was performed using finite-
element simulation. The paper also introduces several effective
methods for dynamic thermal management (DTM): “temperature-
tracking” frequency scaling, localized toggling, and migrating
computation to spare hardware units. Modeling temperature at
the microarchitecture level also shows that power metrics are poor
predictors of temperature, and that sensor imprecision has a sub-
stantial impact on the performance of DTM.

1. Introduction

In recent years, power density in microprocessors has dou-
bled every three years [3, 17], and this rate is expected to in-
crease within one to two generations as feature sizes and frequen-
cies scale faster than operating voltages [25]. Because energy
consumed by the microprocessor is converted into heat, the cor-
responding exponential rise in heat density is creating vast dif-
ficulties in reliability and manufacturing costs. At any power-
dissipation level, heat being generated must be removed from the
surface of the microprocessor die, and for all but the lowest-power
designs today, these cooling solutions have become expensive. For
high-performance processors, cooling solutions are rising at $1–3
or more per watt of heat dissipated [3, 12], meaning that cooling
costs are rising exponentially and threaten the computer industry’s
ability to deploy new systems.

Power-aware design alone has failed to stem this tide, requir-
ing temperature-aware design at all system levels, including the
processor architecture. Temperature-aware design will make use
of power-management techniques, but probably in ways that are
different from those used to improve battery life or regulate peak

�
This work was conducted while David Tarjan visited U.Va. during his

diploma program at the Swiss Federal Institute of Technology Zürich.

power. Localized heating occurs much faster than chip-wide heat-
ing; since power dissipation is spatially non-uniform across the
chip, this leads to “hot spots” and spatial gradients that can cause
timing errors or even physical damage. These effects evolve over
time scales of hundreds of microseconds or milliseconds. This
means that power-management techniques, in order to be used for
thermal management, must directly target the spatial and temporal
behavior of operating temperature. In fact, many low-power tech-
niques have little or no effect on operating temperature, because
they do not reduce power density in hot spots, or because they only
reclaim slack and do not reduce power and temperature when no
slack is present. Temperature-aware design is therefore a distinct
albeit related area of study.

Temperature-specific design techniques to date have mostly fo-
cused on the thermal package (heat sink, fan, etc.). If the pack-
age is designed for worst-case power dissipation, they must be
designed for the most severe hot spot that could arise, which is
prohibitively expensive. Yet these worst-case scenarios are rare:
the majority of applications, especially for the desktop, do not in-
duce sufficient power dissipation to produce the worst-case tem-
peratures. A package designed for the worst case is excessive.

To reduce packaging cost without unnecessarily limiting per-
formance, it has been suggested [4, 12, 13] that the package
should be designed for the worst typical application. Any applica-
tions that dissipate more heat than this cheaper package can man-
age should engage an alternative, runtime thermal-management
technique (dynamic thermal management or DTM). Since typi-
cal high-power applications still operate 20% or more below the
worst case [12], this can lead to dramatic savings. This is the phi-
losophy behind the thermal design of the Intel Pentium 4 [12]. It
uses a thermal package designed for a typical high-power applica-
tion, reducing the package’s cooling requirement by 20% and its
cost accordingly. Should operating temperature ever exceed a safe
temperature, the clock is stopped (we refer to this as global clock
gating) until the temperature returns to a safe zone. This protects
against both timing errors and physical damage that might result
from sustained high-power operation, from operation at higher-
than-expected ambient temperatures, or from some failure in the
package. As long as the threshold temperature that stops the clock
(the trigger threshold) is based on the hottest temperature in the
system, this approach successfully regulates temperature.

The Need for Architecture-Level Thermal Management.
These chip-level hardware techniques illustrate both the benefits
and challenges of runtime thermal management: while it can sub-
stantially reduce cooling costs and still allow typical applications

to run at peak performance, these techniques also reduce perfor-
mance for any applications that exceed the thermal design point.
Such performance losses can be substantial with chip-wide tech-
niques like global clock gating, with a 27% slowdown for our
hottest application, art.

Instead of using chip-level thermal-management techniques,
we argue that the microarchitecture has an essential role to play.
The microarchitecture is unique in its ability to use runtime knowl-
edge of application behavior and the current thermal status of
different units of the chip to adjust execution and distribute the
workload in order to control thermal behavior. In this paper,
we show that architecture-level thermal modeling exposes archi-
tectural techniques that regulate temperature with lower perfor-
mance cost than chip-wide techniques by exploiting instruction-
level parallelism (ILP). For example, one of the best techniques
we found—with only an 8% slowdown—was a “local toggling”
scheme that varies the rate at which only the hot unit (typically the
integer register file) can be accessed. ILP helps mitigate the im-
pact of reduced bandwidth to that unit while other units continue
at full speed.

Architectural solutions do not of course preclude software or
chip-level thermal-management techniques. Temperature-aware
task scheduling, like that proposed by Rohou and Smith [20], can
certainly reduce the need to engage any kind of runtime hardware
technique, but there will always exist workloads whose operating
temperature cannot successfully be managed by software. Chip-
level fail-safe techniques will probably remain the best way to
manage temperature when thermal stress becomes extreme, for ex-
ample when the ambient temperature rises above specifications or
when some part of the package fails (for example, the heat sink
falls off). But all these techniques are synergistic, and only archi-
tectural techniques have detailed temperature information about
hot spots and temperature gradients that can be used to precisely
regulate temperature while minimizing performance loss.

The Need for Architecture-Level Thermal Modeling.
Some architectural techniques have already been proposed [4, 13,
16, 22, 26], so there is clearly interest in this topic within the ar-
chitecture field. To accurately characterize current and future ther-
mal stress, temporal and spatial non-uniformities, and application-
dependent behavior—let alone evaluate architectural techniques
for managing thermal effects—a model of temperature is needed.
Yet the architecture community is currently lacking reliable and
practical tools for thermal modeling. As we show in this paper,
the current technique of estimating thermal behavior from some
kind of average of power dissipation is highly unreliable.

An effective architecture-level thermal model must be simple
enough to allow architects to reason about thermal effects and
tradeoffs; detailed enough to model runtime changes in temper-
ature within different functional units; and yet computationally
efficient and portable for use in a variety of architecture simu-
lators. Even software-level thermal-management techniques will
benefit from thermal models. Finally, the model should be flexible
enough to easily extend to novel computing systems like graphics
and network processors, MEMS, and processors constructed with
nanoscale materials.

Contributions. This paper illustrates the importance of ther-
mal modeling; proposes a compact, dynamic, and portable
thermal model for convenient use at the architecture level;
uses this model to show that hot spots typically occur at
the granularity of architecture-level blocks, and that power-

based metrics are not well correlated with temperature; and
discusses some remaining needs for further improving the
community’s ability to evaluate temperature-aware techniques.
Our model—which we call HotSpot—is publicly available at
http://lava.cs.virginia.edu/hotspot. Using this model, we evalu-
ate a variety of DTM techniques. The most effective technique is
“temperature-tracking” dynamic frequency scaling: timing errors
due to hotspots can be eliminated with an average slowdown of
2%. For temperature thresholds where preventing physical dam-
age is also a concern, using a spare register file and migrating com-
putation between the register files in response to heating is the best,
with an average slowdown of 5–7%. Local toggling performed al-
most as well, with a slowdown of 8%. All our experiments include
the effects of sensor imprecision, which significantly handicaps
runtime thermal management in current technology.

Because thermal constraints are becoming so severe, we expect
that temperature-aware computing will be a rich area for research.
We hope that this paper provides a foundation that stimulates and
helps architects to pursue this topic with the same vigor that they
have applied to low power.

The next section provides further background and related work.
Then Section 3 describes our proposed model and shows the im-
portance of modeling temperature rather than power. Section 4
presents several novel thermal-management techniques and ex-
plores the role of thermal-sensor non-idealities on thermal man-
agement, with Section 5 describing our experimental setup. Sec-
tion 6 compares the various thermal-management techniques’ abil-
ity to regulate temperature, and Section 7 concludes the paper. We
have also published an extended version of this paper as a techni-
cal report [27], providing additional discussion and results.

2. Background and Related Work

Power densities are actually expected to rise faster in future
technologies, because operating voltage (V ���) can no longer scale
as quickly as it has: for 130nm and beyond, the 2001 International
Technology Roadmap for Semiconductors (ITRS) [25] projects
very little change in V ��� . The rising heat generated by these rising
power densities creates a number of problems, because both soft
errors and aging increase exponentially with temperature. Yet to
maintain the traditional rate of performance improvement that is
often associated with Moore’s Law, clock rates must continue to
double every two years. Since carrier mobility is inversely propor-
tional to temperature, operating temperatures cannot rise and may
even need to decrease in future generations for high performance
microprocessors. The ITRS actually projects that the maximum
junction temperature decreases from

�����
C for 180nm to � ��� C for

130nm and beyond. Architecture techniques can play an important
role by allowing the package to be designed for the power dissipa-
tion of a typical application rather than a worst-case application,
and by exploiting instruction-level parallelism to allow extreme
applications to still achieve reasonable performance even though
they exceed the capacity of the package.

A wealth of work has been conducted to design new pack-
ages that provide greater heat-removal capacity, to arrange circuit
boards to improve airflow, and to model heating at the circuit and
board (but not architecture) levels. Compact models are the most
common way to model these effects, although computational fluid
dynamics using finite-element modeling is often performed when
the flow of air or a liquid is considered. An excellent survey of
these modeling techniques is given by Sabry in [21].

2

Despite the long-standing concern about thermal effects, only a
few studies have been published in the architecture field. Gunther
et al. [12] describe the thermal design approach for the Pentium 4,
where thermal management is accomplished via global clock gat-
ing. Lim et al. [16] propose a heterogeneous dual-pipeline proces-
sor for mobile devices in which the standard execution core is aug-
mented by a low-power, single-issue, in-order pipeline that shares
the fetch engine, register files, and execution units but deactivates
out-of-order components like the renamer and issue queues. The
low-power pipeline is primarily intended for applications that can
tolerate low performance and hence is very effective at saving en-
ergy, but this technique is also potentially effective whenever the
primary pipeline overheats.

Huang et al. [13] deploy a sequence of four power-reducing
techniques—a filter instruction cache, DVS, sub-banking for the
data cache, and if necessary, global clock gating—to produce
an increasingly strong response as temperature approaches the
maximum allowed temperature. Brooks and Martonosi [4] com-
pared several stand-alone techniques for thermal management:
frequency scaling, voltage and frequency scaling, fetch toggling
(halting fetch for some period of time, which is similar to the Pen-
tium 4’s global clock gating), decode throttling (varying the num-
ber of instructions that can be decoded per cycle [22]), and specu-
lation control [18]). Brooks and Martonosi also point out the value
of having a direct microarchitectural thermal trigger that does not
require a trap to the operating system and its associated latency.
They find that only fetch toggling and aggressive DVS are effec-
tive. No temperature models of any kind were available at the time
these papers were written, so both use chip-wide power dissipation
averaged over a moving window as a proxy for temperature. As
we show in Section 3.6, this value does not track temperature re-
liably. A further problem is that, because no model of localized
heating was available at the time, some of these techniques do not
reduce power density in the actual hot spots.

Our prior work [26] proposed a simple model for tracking tem-
perature on a per-unit level, and feedback control to modify the
Brooks fetch-toggling algorithm to respond gradually, showing
a 65% reduction in performance penalty compared to the all-or-
nothing approach. The only other thermal model of which we are
aware is TEMPEST, developed by Dhodapkar et al. [9]. TEM-
PEST also models temperature directly using an equivalent RC
circuit, but contains only a single RC pair for the entire chip, giv-
ing no localized information. No prior work in the architecture
field accounts for imprecision due to sensor noise and placement.

This paper shows the importance of a more detailed thermal
model that includes localized heating, thermal diffusion, and cou-
pling with the thermal package, and uses this model to evaluate a
variety of techniques for DTM.

3. Thermal Modeling at the Architecture Level

3.1. Using an Equivalent RC Circuit

There exists a well-known duality [14] between heat transfer
and electrical phenomena. Heat flow can be described as a “cur-
rent” passing through a thermal resistance and leading to a tem-
perature difference analogous to a “voltage”. Thermal capacitance
is also necessary for modeling transient behavior to capture the
delay before a change in power results in the temperature’s reach-
ing steady state. The thermal Rs and Cs together lead to expo-
nential rise and fall times characterized by thermal RC time con-

stants analogous to the electrical RC constants. The rationale be-
hind this duality is that current and heat flow are described by ex-
actly the same differential equations for a potential difference. In
the thermal-design community, these equivalent circuits are called
compact models—dynamic compact models if they include ther-
mal capacitors. This duality provides a convenient basis for an
architecture-level thermal model. For a microarchitectural unit,
heat conduction to the thermal package and to neighboring units
are the dominant mechanisms that determine the temperature.

For the kinds of studies we propose, the compact model must
have the following properties. It must track temperatures at the
granularity of individual microarchitectural units, so the equiv-
alent RC circuit must have at least one node for each unit. It
must be parameterized, in the sense that a new compact model
is automatically generated for different microarchitectures; and
portable, making it easy to use with a range of power/performance
simulators. Finally, it must be BICI, that is, boundary- and
initial-condition independent: the thermal model component val-
ues should not depend on initial temperatures or the particular con-
figuration being studied. The HotSpot model we have developed
meets all these conditions. It is a simple library that generates
the equivalent RC circuit automatically, and, supplied with power
dissipations over any chosen time step, computes temperatures at
the center of each block of interest. The model is BICI by con-
struction since the component values are derived from material,
physical, and geometric values.

Chips today are typically packaged with the die placed against
a spreader plate, often made of aluminum, copper, or some other
highly conductive material, which is in turn placed against a heat
sink of aluminum or copper that is cooled by a fan. This is the
configuration modeled by HotSpot. A typical example is shown in
Figure 1. Low-power/low-cost chips often omit the heat spreader
and sometimes even the heat sink; and mobile devices often use
heat pipes and other packaging that avoid the weight and size of a
heat sink. These extensions remain areas for future work.

Figure 1. Side view of a typical package.

The equivalent circuit—see Figure 2 for an example—is de-
signed to have a direct and intuitive correspondence to the physical
structure of a chip and its thermal package. The RC model there-
fore consists of three vertical, conductive layers for the die, heat
spreader, and heat sink, and a fourth vertical, convective layer for
the sink-to-air interface. The die layer is divided into blocks that
correspond to the microarchitectural blocks of interest and their
floorplan. For simplicity, the example in Figure 2 depicts a die
floorplan of just three blocks, whereas a realistic model would
have 10-20 or possibly even more. The spreader is divided into
five blocks: one that corresponds to the area right under the die
(�����), and four trapezoids corresponding to the periphery that is
not covered by the die. In a similar way, the sink is divided into
five blocks: one corresponding to the area right under the spreader
(��� �); and four trapezoids for the periphery. Finally, the convec-
tive heat transfer from the package to the air is represented by a

3

Figure 2. Example HotSpot RC model for a
floorplan with three architectural units, a heat
spreader, and a heat sink.

single thermal resistance (���������	����
�����). Air is assumed to be at
a fixed ambient temperature, which is generally assumed in ther-
mal design to be

� � �
C [17] (this is not the room ambient, but the

temperature inside the computer “box”). Note that we currently
neglect the small amount of heat flowing into the die’s insulating
ceramic cap and into the I/O pins, and from there into the circuit
board, etc. We also neglect the interface materials between the die,
spreader, and sink. These are all further areas for future work.

For the die, spreader, and sink layers, the RC model consists of
a vertical model and a lateral model. The vertical model captures
heat flow from one layer to the next, moving from the die through
the package and eventually into the air. The lateral model captures
heat diffusion between adjacent blocks within a layer, and from the
edge of one layer into the periphery of the next area (e.g., ��� ac-
counts for heat spread from the edge of Block 1 into the spreader,
while ��� accounts for heat spread from the edge of Block 1 into
the rest of the chip). At each time step in the dynamic simulation,
the power dissipated in each unit of the die is modeled as a current
source (not shown) at the node in the center of that block.

3.2. Deriving the Model

In this section we sketch how the values of R and C are com-
puted. A more detailed discussion can be found in the extended
version of this paper [27].

The derivation is chiefly based upon the fact that thermal resis-
tance is proportional to the thickness of the material and inversely
proportional to the cross-sectional area across which the heat is
being transferred:

���
�
����� (1)

where
�

is the thermal conductivity of the material per unit vol-
ume, ������� ��! �#" for silicon and

� �$��� ��! �%" for copper at
� ��� C. Thermal capacitance, on the other hand, is proportional to
both thickness and area: &

�(' � � �)� (2)

where ' is the thermal capacitance per unit volume, ��* + �-,����.0/1��!32 �#" for silicon and 45* � �6, �)��.0/1�0!72 �5" for copper.
Typical chip thicknesses are in the range of 0.3–0.9mm; this paper
studies a chip of 0.5mm thickness. Note that HotSpot requires a

scaling factor to be applied to the capacitors to account for some
simplifications in our lumped model relative to a full, distributed
RC model, and these are described below.

In addition to the basic derivations above, lateral resistances
must account for spreading resistance between blocks of differ-
ent aspect ratios, and the vertical resistance of the heat sink must
account for constriction resistance from the heat-sink base into
the fins [15]. Spreading resistance accounts for the increased heat
flow from a small area to a large one, and vice-versa for constric-
tion resistance. These calculations are entirely automated within
HotSpot. In the interests of space, details can be found in [27].

Normally, the package-to-air resistance (� �8�����9�8��
:�;���) would
be calculated from the specific heat-sink configuration. In this pa-
per, we instead manually choose a value resistance that gives us a
good distribution of benchmark behaviors; see Section 5.4.

Capacitors in silicon must be multiplied by an empirical fitting
constant of approximately 2. The reason for this is that the bottom
surface of the chip is not actually isothermal, whereas HotSpot
treats the bottom surface as such by feeding all vertical Rs for the
die into a single node. The true isothermal surface lies somewhere
in the heatsink, which means that the “equivalent thermal mass”
that determines the rate of on-die heating is larger than the die
thickness and makes the effective thermal capacitance larger than
what Equation 2 yields. For a 0.5mm-thick die and reasonable
distributions of power dissipation on the chip, we empirically de-
termined the scaling factor remains close to 2 for reasonable floor-
plans and power dissipations by comparing to a reference finite-
element heat-transport model (see Section 3.3). We chose this
simplification because it simplifies the solution of the RC network
without sacrificing accuracy of the temperatures on the die surface
where the hottest temperatures occur. Nevertheless, because this
factor is empirical and dependent on die thickness, it violates our
goal of a fully parameterized model. Improving the model or de-
veloping an analytical expression is another area for future work.

Capacitors in the spreader and sink must be multiplied by about
0.4. Unlike the scaling for silicon, this is not an ad-hoc factor, but
rather a consequence of using a simple single-lump C for each
block, rather than a distributed model. The scaling factor we de-
termine empirically does match the value predicted by [19].

HotSpot dynamically generates the RC circuit when initialized
with a configuration that consists of the blocks’ layout and their
areas (see Section 3.4). The model is then used in a dynamic ar-
chitectural power/performance simulation by providing HotSpot
with dynamic values for power density in each block (these are
the values for the current sources) and the present temperature of
each block. We use power densities obtained from Wattch, av-
eraged over the last 10K clock cycles; see Section 5.1 for more
information on the choice of sampling rate. At each time step, the
differential equations describing the RC circuit are solved using
a fourth-order Runge-Kutta method with four iterations, returning
the new temperature of each block. Each call to the solver takes
about

� �0<>= on a 1.6GHz Athlon processor, so the overhead on
simulation time is negligible for reasonable sampling rates, usu-
ally less than 1% of total simulation time.

3.3. Calibrating the Model

Dynamic compact models are well established in the thermal-
engineering community, although we are unaware of any that have
been developed to describe transient heat flow at the granularity
of microarchitectural units. Of course, the exact compact model

4

(a) Steady state (b) Transient

Figure 3. Model validation. (a): Comparison of steady-state temperatures between Floworks,
HotSpot, and a “simplistic” model with no lateral resistances. (b): Comparison of the step response
in Floworks, HotSpot, and the simplistic model for a single block, the integer register file.

(a) 21364 die photo (b) Equiv. floorplan

I-Cache D-Cache

BPred DTB

FPAdd

FPReg
FPMul

FPMap

IntMap IntQ

IntExec

IntReg

FPQ ITB

LdStQ

(c) CPU core

Figure 4. (a): Die photo of the Compaq Alpha 21364 [8]. (b): Floorplan corresponding to the 21364
that is used in our experiments. (c): Closeup of 21364 core.

must be validated to minimize errors that might arise from model-
ing heat transfer using lumped elements. This is difficult, because
we are not aware of any source of localized, time-dependent mea-
surements of physical temperatures that could be used to validate
our model. It remains an open problem in the thermal-engineering
community how to obtain such direct measurements.

Our best source of reference is currently a finite-element model
in Floworks (http://www.floworks.com), a commercial, finite-
element simulator of 3D fluid and heat flow for arbitrary geome-
tries, materials, and boundary conditions. We model a silicon die
with various floorplans and various power densities in each block;
this die is attached to a copper spreader and a copper heat sink on
one side, and covered by an insulating cap on the other side. Air is
assumed to stay fixed at ����� C; airflow is laminar at 10 m/s. More
detail on our Floworks modeling can be found in [27].

Floworks and HotSpot are only semi-independent, because the
HotSpot fitting factor for the thermal capacitances in silicon was
determined empirically using Floworks. Nevertheless, we can
verify that the two obtain similar steady-state operating temper-
atures and transient response. Figure 3a shows steady state vali-
dation comparing temperatures predicted by Floworks, HotSpot,
and a “simplistic” model that eliminates the lateral portion of
the RC circuit (but not the package, omission of which would
yield extremely large errors). HotSpot shows good agreement
with Floworks, with errors (with respect to the ambient, ��� � C or���	� � K) always less than 5.8% and usually less than 3%. The sim-
plistic model, on the other hand, has larger errors, as high as 16%.
One of the largest errors is for the hottest block, which means too

many thermal triggers will be generated. Figure 3b shows transient
validation comparing, for Floworks, HotSpot, and the simplistic
model, the evolution of temperature in one block on the chip over
time. The agreement is excellent between Floworks and HotSpot,
but the simplistic model shows temperature rising too fast and too
far. Both the steady-state and the transient results show the impor-
tance of thermal diffusion in determining on-chip temperatures.

3.4. Floorplanning: Modeling Thermal Adjacency

The size and adjacency of blocks is a critical parameter for de-
riving the RC model. In all of our simulations so far, we have used
a floorplan (and also approximate microarchitecture and power
model) corresponding to that of the Alpha 21364. This floorplan
is shown in Figure 4. Like the 21364, it places the CPU core at
the center of one edge of the die, with the surrounding area con-
sisting of L2 cache, multiprocessor-interface logic, etc. Since we
model no multiprocessor workloads, we omit the multiprocessor
interface logic and treat the entire periphery of the die as second-
level (L2) cache. The area of this cache seems disproportionately
large compared to the 21364 die photo in Figure 4a, because we
have scaled the CPU to 130nm while keeping the overall die size
constant. Note that we do not model I/O pads, because we do not
yet have a good dynamic model for their power density.

3.5. Limitations

There clearly remain many ways in which the model can be re-
fined to further improve its accuracy and flexibility, all interesting

5

areas for future research. Many of these require advances in ar-
chitectural power modeling in addition to thermal modeling, and
a few—like modeling a wider range of thermal packages and in-
cluding the effects of I/O pads—were mentioned above.

Perhaps the most important and interesting area for future work
is the inclusion of heating due to the clock grid and other intercon-
nect. The effects of wires can currently be approximated by in-
cluding their power dissipation in the dynamic, per-block power-
density values that drive HotSpot. A more precise approach would
separately treat self-heating in the wire itself and heat transfer to
the surrounding silicon, but the most accurate way to model these
effects is not clear. Another important consideration is that activity
in global wires crossing a block may be unrelated to activity within
a block. Wire effects may therefore be important, for example by
making a region that is architecturally idle still heat up.

Another issue that requires further study is the appropriate
granularity at which to derive the RC model. HotSpot is flexible:
blocks can be specified at any desired granularity, but as the gran-
ularity increases, the model becomes more complex and more dif-
ficult to reason about. We are currently using HotSpot with blocks
that correspond to major microarchitectural units, but for units in
which the power density is non-uniform—a cache, for example—
this approximation may introduce some imprecision.

Finally, although HotSpot is based on well-known principles of
thermodynamics and has been validated with a semi-independent
FEM, further validation is needed, preferably using real, physical
measurements from a processor running realistic workloads.

Units Temp. (
�
C) Power (W) Corr. coeff.

IntExec 77.3 4.45 0.09
IntReg 84.5 3.34 0.11
IntQ 72.5 0.23 0.05
IntMap 74.2 0.67 0.09
LdStQ 79.6 2.04 0.09
D-Cache 77.5 9.04 0.09
D-TLB 72.1 0.11 0.03
FPMap 71.7 0.02 0.14
FPAdd 72.7 0.38 0.00
FPQ 71.9 0.01 0.00
FPReg 73.1 0.24 0.01
L2 71.8 3.41 0.04

Table 1. Correlation of power and temperature

3.6. Importance of Directly Modeling Temperature

Due to the lack of an architectural temperature model, a few
prior studies have attempted to model temperatures by averaging
power dissipation over a window of time. This will not capture
any localized heating unless it is done at the granularity of on-chip
blocks, but even then it fails to account for lateral coupling among
blocks, the role of the heat sink, etc. We have also encountered
the fallacy that temperature corresponds to instantaneous power
dissipation, when in fact the thermal capacitance acts as a low-pass
filter in translating power variations into temperature variations.

To show the importance of using a thermal model instead of
a power metric, we have computed the correlation coefficient be-
tween temperature and the moving average of power dissipation.
The data in Table 1 come from gcc, a representative benchmark.
Temperatures were collected using HotSpot, and power measure-
ments were collected using various averaging periods for a simu-

lation of 500 million cycles. We consistently found very poor cor-
relations, especially in the hottest blocks. Some correlation coef-
ficients for temperature and average power are reported in Table 1
for a power-averaging interval of one million cycles.

4. Techniques for Architectural DTM

This section describes the various architectural mechanisms
for dynamic thermal management that are evaluated in this pa-
per, and discusses how sensor imprecision affects thermal man-
agement. It is convenient to define several terms: the emergency
threshold is the temperature above which the chip is in thermal
violation; for � � � , violation may result in timing errors, while
for lower-performance chips with higher emergency thresholds,
violation results in higher error rates and reduced operating life-
time. In either case, we assume that the chip should never vi-
olate the emergency threshold. This is probably overly strict,
since error rates and aging are probabilistic phenomena, and suffi-
ciently brief violations may be harmless, but no good architecture-
level models yet exist for a more nuanced treatment of these
thresholds. Finally, the trigger threshold is the temperature above
which runtime thermal management begins to operate; obviously,
trigger � emergency.

4.1. Runtime Mechanisms

This paper proposes three new architecture techniques for
DTM: “temperature-tracking” frequency scaling, local toggling,
and migrating computation. They are evaluated in conjunction
with two techniques that have previously been proposed, namely
DVS (but unlike prior work, we add feedback control) and global
clock gating (where we also add feedback control).

For techniques which offer multiple possible settings, we use
formal feedback control to choose the setting. Feedback control al-
lows the design of simple but robust controllers that adapt behavior
to changing conditions. Following [28], we use PI (proportional-
integral) controllers, comparing the hottest observed temperature
during each sample against the setpoint. The difference � is mul-
tiplied by the gain

" � to determine by how much the controller
output � should change, i.e.:

��� ��� ����� �	� � ��
 " � � ��� ��� � � (3)

This output is then translated proportionally into a setting for the
mechanism being controlled. The hardware to implement this con-
troller is minimal. A few registers, an adder, and a multiplier are
needed, along with a state machine to drive them. But single-
cycle response is not needed, so the controller can be made with
minimum-sized circuitry. The datapath width in this circuit can
also be fairly narrow, since only limited precision is needed.

As mentioned earlier, Brooks and Martonosi [4] pointed out
that for fast DTM response, interrupts are too costly. We adopt
their suggestion of on-chip circuitry that directly translates any
signal of thermal stress into actuating the thermal response. We
assume that it simply consists of a comparator for each digitized
sensor reading, and if the comparator finds that the temperature
exceeds the trigger, it asserts a signal. If any trigger signal is as-
serted, the appropriate DTM technique is engaged.

Next we describe the new techniques introduced in this paper,
followed by the other techniques we evaluate.

6

Temperature-Tracking Frequency Scaling. Dynamic
voltage scaling (DVS) is typically preferred for power and en-
ergy conservation over dynamic frequency scaling (DFS) because
DVS gives cubic savings in power density relative to frequency.
However, independently of the relationship between frequency and
voltage, the temperature-dependence of carrier mobility means
that frequency is also linearly dependent on the operating temper-
ature. Garrett and Stan [11] report an 18% variation over the range
0-100

�
.

This suggests that the standard practice of designing the nomi-
nal operating frequency for the maximum allowed operating tem-
perature is too conservative. When applications exceed the tem-
perature specification, they can simply scale frequency down in
response to the rising temperature. Because this temperature de-
pendence is mild within the interesting operating region, the per-
formance penalty of doing so is also mild—indeed, negligible.

For each change in setting, DVS schemes must stall for any-
where from 10–50 < s to accommodate resynchronization of the
clock’s phase-locked loop (PLL), but if the transition is gradual
enough, the processor can execute through the change without
stalling, as the Xscale is believed to do [23].

We examine a discretized frequency scaling with 10 MHz steps
and ���0< s stall time for every change in the operating frequency;
and an ideal version that does not incur this stall but where the
change in frequency does not take effect until after �)�0< s has
elapsed. We call these “TT-DFS” and “TT-DFS-i(deal)”. Larger
step sizes do not offer enough opportunity to adapt, and smaller
step sizes create too much adaptation and invoke too many stalls.

This technique is unique among our other techniques in that
the operating temperature may legitimately exceed the � ��� thresh-
old that other techniques must maintain. As long as frequency is
adjusted before temperature rises to the level where timing errors
might occur, there is no violation.

No feedback control is needed for TT-DFS, since the frequency
is simply a linear function of the current operating temperature.
Note that, unlike traditional DFS, TT-DFS does not allow reduc-
tions in voltage without further reductions in frequency.

Local Feedback-Controlled Fetch Toggling. A natural
extension of the feedback-controlled fetch toggling proposed
in [26] is to toggle individual domains of the processor at the
gentlest duty cycle that successfully regulates temperature: “PI-
LTOG”. Only units in thermal stress are toggled. By toggling a
unit like the integer-execution engine at some duty cycle of � ��� ,
we mean that the unit operates at full capacity for � cycles and
then stalls for �

�
� cycles. The choice of duty cycle is a feedback-

control problem for which we use the PI controller with a gain of
3 and a setpoint of �%�$* � � .

In our scheme, we break the processors into the following do-
mains, each of which can be independently toggled:

� Fetch engine: I-cache, I-TLB, branch prediction, and decode.
� Integer engine: Issue queue, register file, and execution units.
� FP engine: Issue queue, register file, and execution units.
� Load-store engine: Load-store ordering queue, D-cache, D-

TLB, and L2-cache.

Note that decoupling buffers between the domains, like the issue
queues, will still dissipate some power even when toggled off in
order to allow neighboring domains to continue operating; for ex-
ample, allowing the data cache to write back results even though
the integer engine is stalled that cycle.

FPAdd

FPReg
FPMul

IntReg2

LdStQ IntMap

IntQ

IntReg

IntExecFPQ

FPMap

ITB

Bpred DTB

Icache Dcache

Figure 5. Floorplan with spare integer register
file for migrating computation.

Migrating Computation. Two units that run hot by them-
selves will tend to run even hotter when adjacent. On the other
hand, separating them will introduce additional communication
latency that is incurred regardless of operating temperature. This
suggests the use of spare units located in cold areas of the chip,
to which computation can migrate only when the primary units
overheat.

We developed a new floorplan that includes an extra copy of
the integer register file, as shown in Figure 5. When the primary
register file reaches �%�$* � � , issue is stalled, instructions ready to
write back are allowed to complete, and the register file is copied,
four values at a time. Then all integer instructions use the sec-
ondary register file, allowing the primary register file to cool down
while computation continues unhindered except for the extra com-
putational latency incurred by the greater communication distance.
The extra distance is accounted for by charging two extra cycle for
every register-file access. (For simplicity in our simulator, we ap-
proximate this by simply increasing the latency of every functional
unit by two cycles, even though this yields pessimistic results.)
When the primary register file returns to �5��* � � , the process is re-
versed and computation resumes using the primary register file.
We call this scheme “MC”. Note that, because there is no way
to guarantee that MC will prevent thermal violations, a failsafe
mechanism is needed, for which we use PI-LTOG.

It is also important to note that the different floorplan will have
some direct impact on thermal behavior even without the use of
any DTM technique. The entire integer engine runs hot, and even
if the spare register file is never used, the MC floorplan spreads out
the hot units, especially by moving the load-store queue (typically
the second- or third-hottest block) farther away.

The design space here is very rich, but we were limited in the
number of floorplans that we could explore, because developing
new floorplans that fit in a rectangle without adding whitespace is
a laborious process. Eventually, we envision an automated floor-
planning algorithm that can derive floorplans automatically using
some simple specification format.

The dual-pipeline scheme proposed by Lim et al. [16] could
actually be considered another example of migrating computa-
tion. Because the secondary, scalar pipeline was designed mainly
for energy efficiency rather than performance, the dual-pipeline
scheme incurred the largest slowdowns of any scheme we studied;
results appear in [27]. MC could also be considered a limited form
of multi-clustered architecture [7].

Dynamic Voltage Scaling. DVS has long been regarded as a
solution for reducing energy consumption, has recently been pro-
posed as one solution for thermal management [4, 13], and is used

7

for this purpose in Transmeta’s Crusoe processors [10]. The fre-
quency must be reduced in conjunction with voltage since circuits
switch more slowly as the operating voltage approaches the thresh-
old voltage. This reduction in frequency slows execution time, es-
pecially for CPU-bound applications, but DVS provides a cubic
reduction in power density relative to frequency.

We model two scenarios that we feel represent the range of
what will likely be available in the near future. In the first (“PI-
DVS”), there are ten possible discrete DVS settings ranging from
100% of the nominal voltage to 50% in equal steps. The penalty
to change the DVS setting is �)��< s, during which the pipeline is
stalled. In the second (“PI-DVS-i(deal)”), the processor may con-
tinue to execute through the change but the change does not take
effect until after ���0<>= have elapsed, just as with TT-DFS-i.

To set the voltage, we use a PI controller with a gain of 10 and
a setpoint of �5��* � � . A problem arises when the controller is near
a boundary between DVS settings, because small fluctuations in
temperature can produce too many changes in setting and a �)��< =
cost each time. To prevent this, we apply a low-pass filter to the
controller output.

Global Clock Gating. Finally, as a baseline, we consider
global clock gating (“GCG”) similar to what the Pentium 4 em-
ploys [12], in which the clock is gated when the temperature ex-
ceeds the trigger of �%��* � � and ungated when the temperature falls
back below that threshold. We also consider a version in which
the duty cycle on the clock gating is determined by a PI controller
with a gain of 1 (“PI-GCG”), similar to the way PI-LTOG is con-
trolled. We recognize that gating the entire chip’s clock at fine
duty cycles may cause voltage-stability problems, but it is moot
for this experiment. We only seek to determine whether PI-GCG
can outperform PI-LTOG, and find that it cannot because it slows
down the entire chip while PI-LTOG exploits ILP.

We also evaluated fetch toggling [4], and a feedback controlled
version in which fetching rather than the clock is gated until the
temperature reaches an adequate level. Overall, fetch toggling and
global clock gating are quite similar. We model global clock gat-
ing because it also cuts power in the clock tree and has imme-
diate effect. We only report results for global clock gating be-
cause GCG slightly outperforms plain fetch toggling, and PI-GCG
slightly outperforms a PI version of fetch toggling. See [27].

4.2. Sensors

Runtime thermal management requires real-time temperature
sensing. So far, all prior published work of which we are aware
has assumed omniscient sensors, which we show in Section 6 can
produce overly optimistic results. Sensors that can be used on chip
for the type of localized thermal response we contemplate are typ-
ically based on analog CMOS circuits using a current reference.
An excellent reference is [1]. The output current is digitized using
a ring oscillator or some other type of delay element to produce a
square wave that can fed to a counter. Although these circuits pro-
duce nicely linear output across the temperature range of interest,
and respond rapidly to changes in temperature, they unfortunately
are sensitive to lithographic variations and supply-current varia-
tions. These sources of imprecision can be reduced by making
the sensor circuit larger, at the cost of increased area and power.
Another constraint that is not easily solved by up-sizing is that of
sensor bandwidth—the maximum sampling rate of the sensor.

Our industry contacts tell us that CMOS sensors which would
be reasonable to use in moderate quantity of say 10–20 sensors

would have at best a precision of ��� � C and sampling rate of 10
microseconds. This matches the results in [1]. We place one sensor
per architectural block.

We model the imprecision by randomizing the true tempera-
ture reading over the specified range ��� � . We assume that the
hardware reduces the sensor noises at runtime by using a moving
average of the last ten measurements, because averaging reduces
the error as the square root of the number of samples. This of
course assumes that the measured value is stationary, which is not
true for any meaningful averaging window This means we must
also account for this change, which is potentially as much as �5* � �
if temperatures can rise �5*;� � per 4���< = . For ��� � , we are therefore
able to reduce the uncertainty to � � �� ���
 �%* � ����� � . An av-
eraging window of ten samples was chosen because the improved
error reduction with a larger window is offset by the larger change
in the underlying value.

There is one additional non-ideality that must be accounted for
when modeling sensors and cannot be reduced by averaging. If
a sensor cannot be located exactly coincident with every possible
hotspot, the temperature observed by the sensor may be cooler by
some spatial-gradient factor � than at the hotspot. If, in addition
to the random error discussed above, there is also a systematic or
offset error in the sensor that cannot be canceled, this increases the
magnitude of the fixed error � . Based on simulations in our finite-
element model and the assumption that sensors can be located near
but not exactly coincident with hotspots, we choose ��� � � .

It can therefore be seen that for any runtime thermal-
management technique, the use of sensors lowers the emergency
threshold by �
 � (4 � in our case). This must be considered
when comparing to more aggressive and costly packaging choices.
It is also strong motivation for finding temperature-sensing tech-
niques that avoid this overhead, perhaps based on clever data fu-
sion among sensors. performance counters.

5. Simulation Setup

In this section, we describe the various aspects of our simu-
lation framework and how they are used to monitor runtime tem-
peratures for the SPEC2000 benchmarks. Further details can be
found in the extended version of this paper [27].

5.1. Integrating the Thermal Model

HotSpot is completely independent of the choice of power/per-
formance simulator. Adding HotSpot to a power/performance
model merely consists of two steps. First, initialization informa-
tion must be passed to HotSpot. This consists of an adjacency
matrix describing the floorplan and an array giving the initial tem-
peratures for each architectural block. Then at runtime, the power
dissipated in each block is averaged over a user-specified interval
and passed to HotSpot’s RC solver, which returns the newly com-
puted temperatures.

Although it is feasible to recompute temperatures every cycle,
this is wasteful, since even at the fine granularity of architectural
units, temperatures take at least 100K cycles to rise by �5*;� � C. We
chose a sampling rate of 10K cycles as the best tradeoff between
precision and overhead.

8

5.2. Power-Performance Simulator

We use a power model based on power data for the Alpha
21364 [2]. The 21364 consists of a processor core identical to the
21264, with a large L2 cache and (not modeled) glueless multipro-
cessor logic added around the periphery. An image of the chip is
shown in Figure 4, along with the floorplan schematic that shows
the units and adjacencies that HotSpot models. Because we study
microarchitectural techniques, we use Wattch version 1.02 [5] to
provide a framework for integrating our power data with the under-
lying SimpleScalar [6] architectural model. Our power data was
for 1.6 V at 1 GHz in a �5*;� �0< process, so we used Wattch’s linear
scaling to obtain power for �5*��)40< , � � � =1.3V, and a clock speed of
3 GHz. We assume a die thickness of 0.5mm. Our spreader and
sink are both made of copper. The spreader is 1mm thick and 3cm,

3cm, and the sink has a base that is 7mm thick and 6cm
,

6cm.
The biggest difficulty in using SimpleScalar is that the under-

lying sim-outorder microarchitecture model is no longer terribly
representative of contemporary processors, so we augmented it to
model an Alpha 21364 as closely as possible. We extended both
the microarchitecture and corresponding Wattch power interface;
extending the pipeline and breaking the centralized RUU into four-
wide integer and two-wide floating-point issue queues, 80-entry
integer and floating-point merged physical/architectural register
file, and 80-entry active list. First-level caches are 64 KB, 2-way,
write-back, with 64B lines and a 2-cycle latency; the second-level
is 4 MB, 8-way, with 128B lines and a 12-cycle latency; and main
memory has a 225-cycle latency. The branch predictor is similar to
the 21364’s hybrid predictor. The only features of the 21364 that
we do not model are the register-cluster aspect of the integer box,
way prediction in the I-cache, and speculative load-use issue with
replay traps (which may increase power density in blocks that are
already quite hot). Finally, we augmented SimpleScalar/Wattch
to account for dynamic frequency and voltage scaling and to re-
port execution time in seconds rather than cycles as the metric of
performance.

Because leakage power is an exponential function of tem-
perature, these power contributions may be large enough to af-
fect the temperature distribution and the effectiveness of differ-
ent DTM techniques. Furthermore, leakage is present regard-
less of activity, and leakage at higher temperatures may affect the
efficacy of thermal-management techniques that reduce only ac-
tivity rates. Eventually, we plan to combine HotSpot with our
temperature/voltage-aware leakage model [30] to more precisely
track dynamic leakage-temperature interactions, which we believe
are an interesting area for future work. For now, to make sure that
leakage effects are modeled in a reasonable way, we use a sim-
pler model: like Wattch, leakage in each unit is simply treated as a
percentage of its power when active, but this percentage is now de-
termined based on temperature and technology node using figures
from ITRS data [25].

5.3. Benchmarks

We evaluate our results using benchmarks from the SPEC
CPU2000 suite. The benchmarks are compiled and statically
linked for the Alpha instruction set using the Compaq Alpha com-
piler with SPEC peak settings and include all linked libraries. For
each program, we fast-forward to a single representative sample
of 500 million instructions. The location of this sample is chosen
using the data provided by Sherwood et al. [24]. Simulation is

conducted using SimpleScalar’s EIO traces to ensure reproducible
results for each benchmark across multiple simulations.

Due to the extensive number of simulations required for this
study and the fact that many did not run hot enough to be inter-
esting thermally, we used only 11 of the total 26 SPEC2k bench-
marks. A mixture of integer and floating-point programs with low,
intermediate, and extreme thermal demands were chosen; all those
we omitted operate well below the �5��* � � trigger threshold. Table 2
provides a list of the benchmarks we study along with their basic
performance, power, and thermal characteristics. It can be seen
that IPC and peak operating temperature are only loosely corre-
lated with average power dissipation. For most SPEC benchmarks,
and all those in Table 2, the hottest unit is the integer register
file—interestingly, this is even true for most benchmarks, includ-
ing floating-point and memory-bound benchmarks. It is not clear
how true this will be for other benchmark sets.

5.4. Package, Warmup, and Initial Temperatures

The correct choice of convection resistance and heat-sink start-
ing temperature are two of the most important determinants of
thermal behavior over the relatively short time scales than can be
tractably simulated using SimpleScalar.

To obtain a useful range of benchmark behaviors for studying
dynamic thermal management, we set the convection resistance
manually. We empirically determined a value of 0.8 K/W that
yields the most interesting mix of behaviors. This represents a
medium-cost heat sink, with a modest savings of probably less
than $10 [29] compared to the 0.7 K/W convection resistance that
would be needed without DTM. Larger resistances, e.g. 0.85 K/W,
save more money but give hotter maximum temperatures and less
variety of thermal behavior, with all benchmarks either hot or cold.
Smaller resistances save less money and bring the maximum tem-
perature too close to � �

�
to be of interest for this study.

The initial temperatures that are set at the beginning of simula-
tion also play a large role in thermal behavior. The most important
temperature is that of the heat sink. Its time constant is on the order
of several minutes, so its temperature barely changes and certainly
does not reach steady-state in our simulations. This means simula-
tions must begin with the correct heat-sink temperature, otherwise
dramatic errors occur. For experiments with DTM (except TT-
DFS), the heat-sink temperature should be set to a value commen-
surate with the maximum tolerated die temperature (�%�$* � � with
our sensor architecture): the DTM response ensures that chip tem-
peratures never exceed this threshold, and heat sink temperatures
are correspondingly lower than with no DTM. If the much hot-
ter no-DTM heat-sink temperatures are used by mistake, dramatic
slowdowns as high as 4.5X are observed for simulations of up to
one billion cycles, compared to maximum slowdowns of about
1.5X with the correct DTM heat-sink temperatures. The difference
between the two heat-sink temperatures can be seen in Table 2. All
our simulations use the appropriate values from this table.

Another factor that we have not accounted for is multi-
programmed behavior. A “hot” application that begins executing
when the heat sink is cool may not generate thermal stress before
its time slice expires. Rohou and Smith [20] used this to guide pro-
cessor scheduling and reduce maximum operating temperature.

Other structures will reach correct operating temperatures in
simulations of reasonable length, but correct starting temperatures
for all structures ensure that simulations are not influenced by such
transient artifacts. This means that after loading the SimpleScalar

9

IPC Average % Cycles in Dynamic Max Steady-State Sink Temp. Sink Temp.
Power (W) Thermal Violation Temp. (

�
C) Temp. (

�
C) (no DTM) (

�
C) (with DTM) (

�
C)

Low Thermal Stress (cold)
parser (I) 1.8 27.2 0.0 79.0 77.8 66.8 66.8
facerec (F) 2.5 29.0 0.0 80.6 79.0 68.3 68.3
Severe Thermal Stress (medium)
mesa (F) 2.7 31.5 40.6 83.4 82.6 70.3 70.3
perlbmk (I) 2.3 30.4 31.1 83.5 81.6 69.4 69.4
gzip (I) 2.3 31.0 66.9 84.0 83.1 69.8 69.6
bzip2 (I) 2.3 31.7 67.1 86.3 83.3 70.4 69.8
Extreme Thermal Stress (hot)
eon (I) 2.3 33.2 100.0 84.1 84.0 71.6 69.8
crafty (I) 2.5 31.8 100.0 84.1 84.1 70.5 68.5
vortex (I) 2.6 32.1 100.0 84.5 84.4 70.8 68.3
gcc (I) 2.2 32.2 100.0 85.5 84.5 70.8 68.1
art (F) 2.4 38.1 100.0 87.3 87.1 75.5 68.1

Table 2. Benchmark summary. “I” = integer, “F” = floating point.

EIO checkpoint at the start of our desired sample, it is necessary
to warm up the state of large structures like caches and branch pre-
dictors, and then to literally warm up HotSpot. When we start sim-
ulations, we first run the simulations in full-detail cycle-accurate
mode (but without statistics-gathering) for 100 million cycles to
train the caches—including the L2 cache—and the branch predic-
tor. With the microarchitecture in a representative state, we deal
with temperatures. These two issues must be treated sequentially,
because otherwise cold-start cache effects would idle the proces-
sor and affect temperatures. To warm up the temperatures, we first
set the blocks’ initial temperatures to the steady-state temperatures
we calculate using the per-block average power dissipation for
each benchmark. This accelerates thermal warm up, but a dynamic
warmup phase is still needed because the sample we are at proba-
bly does not exhibit average behavior in all the units We therefore
allow the simulation to continue in full-detail cycle-accurate mode
for another 200 million cycles to allow temperatures to reach truly
representative values. Only after these two warmup phases have
completed do we begin to track any experimental statistics.

6. Results for DTM

In this section, we use the HotSpot thermal model to evaluate
the performance of the various techniques described in Section 4.
First we assume realistic, noisy sensors, and then consider how
much the noise degrades DTM performance.

6.1. Results with Sensor Noise Present

Figure 6 presents the slowdown (execution time with thermal
management) / (original execution time) for the “hot” and “warm”
benchmarks for each of the thermal management techniques. The
bars are the main focus: they give results for the better version of
each technique: “ideal” for TT-DFS and PI-DVS, the PI-controller
version of GCG, PI local toggling, and MC. The lines give re-
sults for the weaker version of some techniques: TT-DFS and PI-
DVS with stalls for changing settings, and GCG with no controller
(i.e., all-or-nothing). None of the techniques incur thermal viola-
tions. Only the hot and warm benchmarks are shown; the two
cold benchmarks are unaffected by DTM, except they obtain a
1% speedup with TT-DFS-i and a 1% slowdown with TT-DFS.

We also tried some other cold benchmarks but observed minimal
speedup with TT-DFS-i, and often slowdown with TT-DFS.

The best technique for thermal management by far is TT-DFS,
with the TT-DFS-i version being slightly better. The performance
penalty for even the hottest benchmarks is small; the worst is art
with only a 2% slowdown for TT-DFS-i and a 3% slowdown for
TT-DFS. If the maximum junction temperature of � � � is strictly
based on timing concerns, and slightly higher temperatures can be
tolerated without unduly reducing operating lifetime, then TT-DFS
is vastly superior because its impact is so gentle.

It might seem there should be some benefit with TT-DFS from
increasing frequency when below the trigger threshold, but we did
not observe any noteworthy speedups. For higher frequency to
provide significant speedup, the application must be CPU-bound,
but then it will be hot and frequency cannot be increased.

If the junction temperature of � �
�

is dictated not only by timing
but also physical reliability, then TT-DFS is not a viable approach.
Of the remaining techniques, MC and PI-LTOG are the best. MC
is better than PI-LTOG for all but three applications, gcc, crafty,
and perlbmk, and the average slowdown for MC is 7% compared
to 8% for PI-LTOG. Naturally, MC performs better if the extra
communication latency to the spare register file is smaller: if that
penalty is one cycle instead of two, MC’s average slowdown is 5%.
It is important to note that MC alone is not able to prevent all ther-
mal violations; our MC technique spent 20-37% of its time using
the fallback technique, PI-LTOG. This means that the choice of
fallback technique is important to performance. Results are much
worse, for example, if we use DVS or GCG as the fallback.

Migrating computation and localized toggling outperform
global toggling and DVS, even though DVS obtains a cubic reduc-
tion in power density relative to the reduction in frequency. The
reason is primarily that GCG and DVS slow down the entire chip,
although non-ideal DVS also suffers a great deal from the stalls
associated with changing settings. In contrast, MC and PI-LTOG
are able to exploit ILP.

A very interesting observation is that with MC, two bench-
marks, gzip and mesa, never use the spare unit and suffer no slow-
down, and vortex uses it only rarely and suffers almost no slow-
down. The new floorplan by itself is sufficient to reduce thermal
coupling among the various hot units in the integer engine and
therefore prevents many thermal violations.

10

1

1.0 5

1.1

1.15

1.2

1.2 5

1.3

ar
t

gc
c

vo
rte

x

cr
af

ty

eo
n

M
E

AN
-H

bz
ip

2

gz
ip

m
es

a

pe
rlb

m
k

M
E

A
N

-W

S
lo

w
do

w
n

T T -D F S -i
P I-D V S -i
P I-G C G
P I-L T O G
M C
T T -D F S
P I-D V S
G C G

Figure 6. Slowdown for DTM. Bars: better version of technique. Lines: weaker version.

Although we were not able to explore a wider variety of floor-
plans, the success of these floorplan-based techniques suggests
an appealing way to manage heat. And once alternate floorplans
and extra computation units are contemplated, the interaction of
performance and temperature for microarchitectural clusters [7]
becomes an interesting area for further investigation. These re-
sults also suggest that a profitable direction for future work is to
re-consider the tradeoff between latency and heat when design-
ing floorplans, and that a hierarchy of techniques from gentle to
strict—as suggested by Huang et al. [13]—is most likely to give
the best results. A thermal management scheme might be based
on TT-DFS until temperature reaches a dangerous threshold, then
engage some form of migration, and finally fall back to DVS.

6.2. Role of Sensor Error

Sensor noise hurts in two ways; it generates spurious triggers
when the temperature is actually not near violation, and it forces a
lower trigger threshold. Both reduce performance. Figure 7 shows
the impact of both these effects for the PI-GCG and PI-DVS tech-
niques. The bottom portion of each bar shows the slowdown from
only reducing the trigger by one degree, and the top portion shows
the subsequent slowdown from introducing sensor noise of ��� � .

For the warm and hot benchmarks, the impact of both these ef-
fects was fairly similar. Lowering the trigger threshold from ���5* � �
(which would be appropriate if noise were not present) reduces
performance by 1–4% for both PI-GCG and PI-DVS. The spuri-
ous triggers further reduce performance by 3–6% for PI-GCG, and
by 6–9% for PI-DVS, with art an exception for PI-DVS at 13%.
The higher impact of noise for DVS compared to GCG is due to
the high cost of stalling each time a spurious trigger is invoked.

Sensor error clearly has a significant impact on the effective-
ness of thermal management. These results only considered the
impact of sensor noise, the “S” factor discussed in Section 4.2;
with no sensor noise and a higher trigger, PI-GCG’s slowdown for
the hot benchmarks moves from 11.6% to 3.6%, and PI-DVS’s
slowdown from 17.4% to 5.2%. Reducing sensor offset—the
“G” factor—due to manufacturing variations and sensor placement
would provide substantial further improvements.

Overall, our results also indicate not only the importance of
modeling temperature in thermal studies, but also the importance
of modeling realistic sensor behavior.

0
0.02
0.04
0.06
0.08

0.1
0.1 2

P I-G C G P I-D V S

S
lo

w
d

o
w

n

N o is e
T h re s h o ld

Figure 7. Slowdown for DTM from eliminat-
ing sensor noise, and from the consequent
increase in trigger threshold to ����� ��� .

7. Conclusions and Future Work

This paper has presented HotSpot, a practical and compu-
tationally efficient approach to modeling thermal behavior in
architecture-level power/performance simulators. Our technique
is based on a simple network of thermal resistances and capaci-
tances that have been combined to account for heating with a block
due to power dissipation, heat flow among neighboring blocks, and
heat flow into the thermal package. The model has been validated
against finite-element simulations using Floworks, a commercial
simulator for heat and fluid flow. HotSpot is publicly available at
http://lava.cs.virginia.edu/hotspot.

Using HotSpot, we can determine which are the hottest mi-
croarchitectural units; understand the role of different thermal
packages on architecture, performance, and temperature; under-
stand programs’ thermal behavior; and evaluate a number of tech-
niques for regulating on-chip temperature. When the maximum
operating temperature is dictated by timing and not physical re-
liability concerns, “temperature-tracking” frequency scaling low-
ers the frequency when the trigger temperature is exceeded, with
average slowdown of only 2%, and only 1% if the processor
need not stall during frequency changes. When physical reli-
ability concerns require that the temperature never exceed the
specification— � � � in our studies—the best solution we found was
either a feedback-controlled localized toggling scheme (slowdown
8%), or a computation-migration scheme that uses a spare inte-
ger register file (slowdown 5–7% depending on access time to the
spare register file). These schemes perform even better than global
clock gating or an ideal feedback-controlled version of DVS that

11

incurs no stalls when changing settings, because the localized tog-
gling exploits instruction-level parallelism while GCG and DVS
slow down the entire processor.

A significant portion of the performance loss of all these
schemes is due to sensor error, which invokes thermal manage-
ment unnecessarily. Even with a mere ��� � margin, sensor er-
ror introduced 6–13% slowdowns, nearly 75% of the total perfor-
mance loss we observed.

We feel that these results make a strong case that runtime ther-
mal management is an effective tool in managing the growing heat
dissipation of processors, and that microarchitecture DTM tech-
niques must be part of any temperature-aware system. But to
obtain reliable results, architectural thermal studies must evaluate
their techniques based on temperature and must include the effects
of sensor noise.

We hope that this paper conveys an overall understanding of
thermal effects at the architecture level, and of the interactions of
microarchitecture, power, sensor precision, temperature, and per-
formance. This paper only touches the surface of what we be-
lieve is a rich area for future work. The RC model can be refined
in many ways; it can also be extended to multiprocessor, chip-
multiprocessor, and simultaneous multithreaded systems; many
new workloads and DTM techniques remain to be explored; a bet-
ter understanding is needed for how programs’ execution charac-
teristics and microarchitectural behavior determine their thermal
behavior; and clever data-fusion techniques for sensor readings
are needed to allow more precise temperature measurement and
reduce sensor-induced performance loss. Another important prob-
lem is to understand the interactions among dynamic management
techniques for active power, leakage power, current variability, and
thermal effects, which together present a rich but poorly under-
stood design space where the same technique may possibly be used
for multiple purposes but at different settings. Finally, thermal
adjacency was shown to be important, making temperature-aware
floorplanning an important area of research.

Acknowledgments
This work is supported in part by the National Science Foundation un-

der grant nos. CCR-0133634 and MIP-9703440, a grant from Intel MRL,
and an Excellence Award from the Univ. of Virginia Fund for Excellence
in Science and Technology. We would also like to thank Peter Bannon,
Howard Davidson, Antonio González, Jose González González, Margaret
Martonosi, and the anonymous reviewers for their helpful comments.

References

[1] A. Bakker and J. Huijsing. High-Accuracy CMOS Smart
Temperature Sensors. Kluwer Academic, Boston, 2000.

[2] P. Bannon. Personal communication, Sep. 2002.
[3] S. Borkar. Design challenges of technology scaling. IEEE

Micro, pp. 23–29, Jul.–Aug. 1999.
[4] D. Brooks and M. Martonosi. Dynamic thermal management

for high-performance microprocessors. In Proc. HPCA-7, pp.
171–82, Jan. 2001.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proc. ISCA-27, pp. 83–94, June 2000.

[6] D. C. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. ACM SIGARCH CAN, 25(3):13–25, June 1997.

[7] R. Canal, J.-M. Parcerisa, and A. González. A cost-effective
clustered architecture. In Proc. PACT, pp. 160–68, Oct. 1999.

[8] Compaq 21364 die photo. From website: CPU Info Center.
http://bwrc.eecs.berkeley.edu/CIC/die photos.

[9] A. Dhodapkar, C. H. Lim, G. Cai, and W. R. Daasch. TEM-
PEST: A thermal enabled multi-model power/performance
estimator. In Proc. PACS, Nov. 2000.

[10] M. Fleischmann. Crusoe power management: Cutting x86
operating power through LongRun. In Embedded Processor
Forum, June 2000.

[11] J. Garrett and M. R. Stan. Active threshold compensation
circuit for improved performance in cooled CMOS systems.
In Proc. ISCAS, May 2001.

[12] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Manag-
ing the impact of increasing microprocessor power consump-
tion. Intel Tech. J., Q1 2001.

[13] W. Huang, J. Renau, S.-M. Yoo, and J. Torellas. A frame-
work for dynamic energy efficiency and temperature man-
agement. In Proc. Micro-33, pp. 202–13, Dec. 2000.

[14] A. Krum. Thermal management. In F. Kreith, editor, The
CRC handbook of thermal engineering, pp. 2.1–2.92. CRC
Press, Boca Raton, FL, 2000.

[15] S. Lee, S. Song, V. Au, and K. Moran. Constrict-
ing/spreading resistance model for electronics packaging. In
Proc. AJTEC, pp. 199–206, Mar. 1995.

[16] C.-H. Lim, W. Daasch, and G. Cai. A thermal-aware su-
perscalar microprocessor. In Proc. ISQED, pp. 517–22, Mar.
2002.

[17] R. Mahajan. Thermal management of CPUs: A perspective
on trends, needs and opportunities, Oct. 2002. Keynote pre-
sentation, THERMINIC-8.

[18] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
speculation control for energy reduction. In Proc. ISCA-25,
pp. 132–41, June 1998.

[19] J. M. Rabaey. Digital Integrated Circuits: A Design Perspec-
tive. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[20] E. Rohou and M. Smith. Dynamically managing processor
temperature and power. In Proc. FDDO-2, Nov. 1999.

[21] M.-N. Sabry. Dynamic compact thermal models: An
overview of current and potential advances. In Proc.
THERMINIC-8, Oct. 2002.

[22] H. Sanchez et al. Thermal management system for high-
performance PowerPC microprocessors. In Proc. COMP-
CON, page 325, 1997.

[23] G. Semeraro et al. Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency
scaling. In Proc. HPCA-8, pp. 29–40, Feb. 2002.

[24] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. In Proc. PACT, Sept. 2001.

[25] SIA. International Technology Roadmap for Semiconduc-
tors, 2001.

[26] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-
theoretic techniques and thermal-RC modeling for accurate
and localized dynamic thermal management. In Proc. HPCA-
8, pp. 17–28, Feb. 2002.

[27] K. Skadron et al. Temperature-aware microarchitecture: Ex-
tended discussion and results. Tech. Report CS-2003-08,
U.Va. Dept. of Computer Science, Apr. 2003.

[28] S. Velusamy, K. Sankaranarayanan, D. Parikh, T. Abdelza-
her, and K. Skadron. Adaptive cache decay using formal
feedback control. In Proc. WMPI-2, May 2002.

[29] R. Viswanath, W. Vijay, A. Watwe, and V. Lebonheur. Ther-
mal performance challenges from silicon to systems. Intel
Tech. J., Q3 2000.

[30] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotleakage: A temperature-aware model of sub-
threshold and gate leakage for architects. Tech. Report CS-
2003-05, U.Va. Dept. of Computer Science, Mar. 2003.

12

