
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994 431

Power Analysis of Embedded Software: A First
Step Towards Software Power Minimization

Vivek Tiwari, Sharad Malik, and Andrew Wolfe

Abstruct- Embedded computer systems are characterized by
the presence of a dedicated processor and the software that
runs on it. Power constraints are increasingly becoming the
critical component of the design specification of these systems.
At present, however, power analysis tools can only be applied
at the lower levels of the design-the circuit or gate level. It is
either impractical or impossible to use the lower level tools to
estimate the power cost of the software component of the system.
This paper describes the first systematic attempt to model this
power cost. A power analysis technique is developed that has
been applied to two commercial microprocessors-Intel 486DX2
and Fujitsu SPARClite 934. This technique can be employed to
evaluate the power cost of embedded software. This can help
in verifying if a design meets its specified power constraints.
Further, it can also be used to search the design space in software
power optimization. Examples with power reduction of up to
40%, obtained by rewriting code using the information provided
by the instruction level power model, illustrate the potential of
this idea.

I. INTRODUCTION
MBEDDED COMPUTER systems are characterized by E the presence of a dedicated processor which executes

application specific software. Recent years have seen a large
growth of such systems. This growth is driven by several
factors. The first is an increase in the number of applications
as illustrated by the numerous examples of “smart electronics”
around us. A notable example is automobile electronics where
embedded processors control each aspect of the efficiency,
comfort and safety of the new generation of cars. The second
factor leading to their growth is the increasing migration
from application specific logic to application specific code
running on existing processors. This in turn is driven by two
distinct forces. The first is the increasing cost of setting up and
maintaining a fabrication line. At over a billion dollars for a
new line, the only components that make this affordable are
high volume parts such as processors, memories and possibly
FPGA’s. Application specific logic is getting increasingly
expensive to manufacture and is the solution only when speed
constraints rule out programmable alternatives. The second
force comes from the application houses, which are facing
increased pressures to reduce the time to market as well as

Manuscript received June 15, 1994; revised August 23, 1994. The work of
V. Tiwari was supported by an IBhf Graduate Fellowship. The work of S.
Malik nas supported by an IBM Faculty Development Award.

The authors are with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08540 USA.

IEEE Log Number 9406371.

to have predictable schedules. Both of these can be better
met with software programmable solutions made possible by
embedded systems. Thus, we are seeing a movement from the
logic gate being the basic unit of computation on silicon, to
an instruction running on an embedded processor.

A large number of embedded computing applications are
power critical, i.e., power constraints form an important part of
the design specification. This has led to a significant research
effort in power estimation and low power design. However,
there is very little available in the form of design tools to help
embedded system designers evaluate their designs in terms of
the power metric. At present, power measurement tools are
available for only the lower levels of the design-at the circuit
level and to a limited extent at the logic level. At the least
these are very slow and impractical to use to evaluate the
power consumption of embedded software, and often cannot
even be applied due to lack of availability of circuit and gate
level information of the embedded processors. The embedded
processors currently used in designs take two possible shapes.
The first is “off the shelf’ microprocessors or digital signal
processors (DSP’s). The second is in the form of embedded
cores which can be incorporated in a larger silicon chip along
with program/data memory and other dedicated logic. In the
first case, the processor information available to the designer
is whatever the manufacturer cares to make available through
data books. In the second case, the designer has logidtiming
simulation models to help verify the designs. In neither case
is there lower level information available for power analysis.

This paper describes a power analysis technique for em-
bedded software. The goal of this research is to present
a methodology for developing and validating an instruction
level power model for any given processor. Such a model
can then be provided by the processor vendors for both off
the shelf processors as well as embedded cores. This can
then be used to evaluate embedded software, much as a gate
level power model has been used to evaluate logic designs.
The technique has so far been applied to two commercial
microprocessors-the Intel 486DX2 and the Fujitsu SPARClite
934. This paper uses the former as a basis for illustrating the
technique. The application of this technique for the latter is
described in [9]. The ability to evaluate software in terms
of the power metric helps in verifying if a design meets its
specified power constraints. In addition, it can also be used
to search the design space in software power optimization.
Examples with power reduction of up to 40% on the 486DX2,
obtained by rewriting code using the information provided by

1063-8210/94$04.00 0 1994 IEEE

438 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994

the instruction level power model, illustrate the potential of
this idea.

11. EXPERIMENTAL METHOD

The power consumption in microprocessors has been a
subject of intense study lately. Attempts to model the power
consumption in processors often adopt a “bottom-up’’ ap-
proach. Using detailed physical layouts and sophisticated
power analysis tools, isolated power models are built for each
of the internal modules of the processor. The total power
consumption of the processor is then estimated using these
individual models. No systematic attempt, however, has been
made to relate the power consumption of the processor to
the software that executes on it. Thus, while it is generally
recognized that the power consumption of a processor vanes
from program to program, there is a complete lack of models
and tools to analyze this variation. This is also the reason
why the potential for power reduction through modification
of software is so far unknown and unexploited. The goal of
our work is to overcome these deficiencies by developing a
methodology that would provide a means for analyzing the
power consumption of a processor as it executes a given
program. We want to provide a method that makes it possible
to talk about the “power/energy cost of a given program
on a given processor.” This would make it possible to very
accurately evaluate the power cost of the programmable part
of an embedded system.

We propose the following hypothesis that forms the basis
for meeting the above goal: By measuring the current drawn
by the processor as it repeatedly executes certain instructions
or certain short instruction sequences, it is possible to obtain
most of the information that is needed to evaluate the power
cost of a program for that processor.

The intuition that guides this hypothesis is as follows:
Modern microprocessors are extremely complex systems con-
sisting of several interacting functional blocks. However, this
internal complexity is hidden behind a simple interface-the
instruction set. Thus to model the energy consumption of
this complex system, it seems intuitive to consider individual
instructions. Further, each instruction involves specific pro-
cessing across various units of the processor. This can result
in circuit activity that is characteristic of each instruction and
can vary with instructions. If a given instruction is executed
repeatedly, then the power consumed by the processor can
be thought of as the power cost of that instruction. In a
given program, certain inter-instruction effects also occur,
such as the effect of circuit state, pipeline stalls and cache
misses. Repeatedly executing certain instruction sequences
during which these effects occur may provide a way to isolate
the power cost of these effects. Thus the sum of the power
costs of the each instruction that is executed in a program
enhanced by the power cost of the inter-instruction effects can
be an estimate for the power cost of the program.

The above hypothesis, however, is of no use until it is
validated. We have empirically validated the hypothesis for
two commercial microprocessors using actual physical mea-
surements of the current drawn by them. The validation of the

hypothesis, and based on it, the derivation of the parameters
of an instruction level power model for the Intel 486DX2, is
the subject of the next few sections.

Given that the above hypothesis has been validated for two
processors using physical measurements, there is an alternative
way for deriving the parameters of the instruction level power
model. Instead of physically measuring the current drawn
by the CPU, it can be estimated using accurate, simulation
based power analysis tools. The execution of the given instruc-
tiodinstruction sequence is simulated on lower level (circuit
or layout) models of the CPU, and the power analysis tool
provides an estimate of the current drawn. The advantage of
this method is that since detailed internal information of the
CPU is available, it may be possible to relate the power cost
of the instructions to the micro-architecture of the CPU. This
could provide cues to the CPU designer for optimizing the
designs for low power.

However, in the case of embedded system design, detailed
layout information of the CPU is often not available to the
designer of the system. Even if it is available, the simulation
based tools and techniques are expensive and difficult to apply.
A methodology based on laboratory measurements, like the
one described below, is inexpensive and practical, and often
may be the only option available. Given a setup to measure
the current being drawn by the microprocessor, the only other
information required can be obtained from the widely available
manuals and handbooks specific to that microprocessor. The
specifics of the measurement methodology are described next.

A. Power and Energy

The average power consumed by a microprocessor while
running a certain program is given by: P = I x VCC, where
P is the average power, I is the average current and VCC is
the supply voltage. Since power is the rate at which energy
is consumed, the energy consumed by a program is given by:
E = P x T , where T is the execution time of the program.
This in turn is given by: T = N x T , where N is the number
of clock cycles taken by the program and T is the clock period.

In common usage the terms power consumption and energy
consumption are often interchanged, as has been done in
the above discussion. However it is important to distinguish
between the two in the context of programs running on
mobile applications. Mobile systems run on the limited energy
available in a battery. Therefore the energy consumed by the
system or by the software running on it determines the length
of the battery life. Energy consumption is thus the focus of
attention. We will attempt to maintain a distinction between
the two terms in the rest of the paper. However, in certain cases
the term power may be used to refer to energy, in adherence
to common usage.

B. Current Measurement

For this study, the processor used was a 40 MHz Intel
486DX2-S Series CPU. The CPU was part of a mobile
personal computer evaluation board with 4 MB of DRAM
memory. The reason for the choice of this processor was that
its board setup allowed the measurement of the CPU and

TIWARI et al.: POWER ANALYSIS OF EMBEDDED SOFTWARE 439

DRAM subsystem current in isolation from the rest of the
system. We would like to emphasize that while the numbers
we report here are spec@c to this processor and board, the
methodology used by us in developing the model is widely
applicable. The current was measured through a standard off
the shelf, dual-slope integrating digital ammeter. Execution
time of programs was measured through detection of specific
bus states using a logic analyLer.

If a program completes execution in a short time, a current
reading cannot be obtained visually. To overcome this, the
programs being considered were put in infinite loops and
current readings were taken. The current consumption in the
CPU will vary in time depending on what instructions are
being executed. But since the chosen ammeter averages current
over a window of time (100 ms), if the execution time of the
program is much less than the width of this window, a stable
reading will be obtained.

The main limitation of this approach is that it will not work
for programs with larger execution times since the ammeter
may not show a stable reading. However, in this study, the
main use of this approach was in determining the current
drawn while a particular instruction (instruction sequence) was
being executed. A program written with several instances of
the targeted instruction (instruction sequence) executing in a
loop, has a periodic current waveform which yields a steady
reading on the ammeter. This inexpensive approach works very
well for this. However, the main concepts described in this
paper are independent of the actual method used to measure
average current. If sophisticated data acquisj tion based mea-
surement instruments are available, the measurement method
can be based on them.

For our setup, Vcc was 3.3 V and r was 25 ns, correspond-
ing to the 40 MHz internal frequency of the CPU. Thus, if the
average current for an instruction sequence is I A, and the
number of cycles it takes to execute is N , the energy cost of
the sequence is given by: E = I x V& x N x r , which equals:
(8.25 x lo-* x I x N) J. Throughout the rest of the paper, in
order to specify the energy cost of an instruction (instruction
sequence), the average current will be specified. The number
of cycles will either be explicitly specified, or will be clear
from the context.

111. INSTRUCTION LEVEL MODELING

Based on the hypothesis described in Section 11, an instruc-
tion level energy model has been developed and validated
for the 486DX2. Under this model each instruction in the
instruction set is assigned a fixed energy cost called the base
energy cost. The variation in base costs of a given instruction
due to different operand and address values is then quantified.
The base energy cost of a program is based on the sum of
the base energy costs of each executed instruction. However,
during the execution of a program, certain inter-instruction
effects occur whose energy contribution is not accounted for
if only base costs are considered. The first type of inter-
instruction effect is the effect of circuit state. The second type
is related to resource constraints that can lead to stalls and
cache misses. The energy cost of these effects is also modeled
and used to obtain the total energy cost of a program.

STAGE U 1 2 3 4 5 I INSTRUCTION ‘1 DECODE-1 11 DECODE-2 1/ EXECUTION 11 w\L:fi:zK 1
FETCH

Fig 1 Intemal pipelining in the 486DX2

The instruction-level energy model described here is based
on actual measurements and evolved as a result of extensive
experimentation. The various components of this model are
described in the subsections below.

A. Base Energy Cost

The base cost for an instruction is determined by construct-
ing a loop with several instances of the same instruction. The
average current being drawn is then measured. This current
multiplied by the number of cycles taken by each instance of
the instruction is proportional to the total energy as described
in Section 11.

While this method seems intuitive if the CPU executes only
one instruction at a given time, most modern CPU’s, including
the 486DX2, process more than one instruction at a given time
due to pipelining. However, the following discussion shows
that the concept of a base energy cost per instruction and its
derivation remains unchanged.

The 486DX2 CPU has a five-stage pipeline as shown in
Fig. 1 [6]. Let E ~ I ~ be the average energy consumed by
pipeline stage j, when instruction I k executes in that stage.
Pipeline stages are separated from each other by latches.
Thus, if we ignore the effect of circuit state and resource
constraints for now, the energy consumption of different stages
is independent of each other. Let us assume that in a given
cycle, instruction I1 is being processed by stage 1, I2 by stage
2 , and so on. The total energy consumed by the CPU in that
cycle would be: Ecyrle = E ~ I] + E21, + E31, + E ~ I , + EST,.
On the other hand, the total energy consumed by a given
instruction I I , as it moves through the various stages is:
Eins = cj Ejl1. This quantity actually refers to the base
cost in the sense described above. Our method of forming a
loop of instances of instruction I I , results in E,?,,~, = E;,,,
since in that case, 11 = 12 = 13 = I, = 15. The average
current in this case is Cj Ej1, /(V& x r) , which is the same
as the ammeter reading obtained.

Some instructions take multiple cycles in a given pipeline
stage. All stages are then stalled. The reasoning applied
above, however, remains unchanged. The base energy cost
of the instruction is just the observed average current value
multiplied by the number of cycles taken by the instruction
in that stage. For instance, consider a loop of instruction
11, where II takes ni cycles in the 4th stage. Therefore,
E41, is spread over fm cycles. Energy consumption in any
of the stalled stages can be considered as a part of E41,.
Then the current value observed on the ammeter will be
E, Ej l , /(V& x r x m). This quantity multiplied by T I L yields xi. Ej~,/(Vcc x r) , the base energy cost of the instruction.
711 represents the “number of cycles” parameter specified in
instruction timing tables in microprocessor manuals.

440 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. 2, NO. 4, DECEMBER 1994

No. of 1’s
Current(mA)

TABLE I
SUBSET OF THE BASE COST TABLE FOR THE 486DX2’

1 Number I Instruction I Current I Cycles 1
0 4 8 12 16

309.5 305.2 300.1 294.2 288.5
U U

n 12 I LEA DX, [BXI J I1

~~

17 I CMP BX,DX I 298.2 I 1
18 I CMP CSX1,DX I 388.0 I 2

Table I is a sample table of CPU base costs for some
486DX2 instructions. The numbers in Column 3 are the
observed average current values. The overall base energy cost
of an instruction is the product of the numbers in Columns 3
and 4 and the constants VCC and r. A rigorous confidence
interval was not determined for the current measurement
apparatus. However, it was observed that repeated runs of
an experiment at different times resulted in only a very small
variation in the observed average current values. The variation
was in the range of f l mA.

Care should be taken in designing the experiments used to
determine the base costs. The loops that are used to determine
the base costs of instructions have to satisfy certain size
constraints. As more of the target instructions are put in the
loop, the impact of the branch statement at the bottom of the
loop is minimized. The observed current value thus converges
with increasing loop size. Thus, the loop size should be large
enough in order to obtain the converged value. Very large
loops, on the other hand, may cause cache misses, which
are undesirable during determination of base costs. A loop
size of 120, which satisfies both the above constraints, was
chosen. Only the target instructions should execute on the CPU
during experiments, and thus system effects like multiple time-
sharing applications and interrupts cannot be allowed during
the experiments.

Variations in Base Cost: As Table I shows, instructions
with differing functionality and different addressing modes
can have very different energy costs. This is to be expected
since different functional blocks are being affected in different
ways by these instructions. Within the same family of
instructions, there is variability in base costs depending on
the value of operands used. For example, consider the MOV

‘AI1 instructions are executed in “Real Mode”. AI1 registers contain 0,
except in entry 1 1 , where CL contains 1 . Entry 15 is a “taken” jump while
entry 16 is “fall through’. Entries 5 , 6, and 9 show normalized costs [I I] .

TABLE I1
BASE COSTS OF MOV BX, DATA

data 1 0 1 OF I OFF I OFFF I OFFFF 1

register,immediate family. Use of different registers results
in insignificant variation since the register file is probably
a symmetric structure. Variation in the immediate value,
however, leads to measurable variation. For example, for
MOV BX, immediate, the costs seem to be almost a linear
function of the number of 1’s in the binary representation
of the immediate data-the more the l ’s , the lesser the cost.
Table I1 illustrates this through some sample values. Similarly,
for the ADD instruction, the base costs are a function of the
two numbers being added. The range of variation in all cases,
however, is small. It is observed to be about 14 mA, which
corresponds to less than a 5% variation.

For instructions involving memory operands, there is a
variation in the base cost depending upon the address of the
operand. The variation is of two kinds. The first is due to
operands that are misaligned [6]. Mis-aligned accesses lead
to cycle penalties and thus energy penalties that are added to
the base cost. Within aligned accesses there is variation in
the base cost depending upon the value of the address. For
example, for MOV DX, [BXI , the base cost can be greater
than the cost shown in Table I by about 3.5%. This variation is
a function of the number of, and position of, 1’s in the binary
representation of the address.

Given the operand value and address, exact base costs can be
obtained through direct measurements. However, these exact
values will be of little use since typically a data or address
value can be known only at run-time. Thus, from the point of
view of program energy cost estimation, the only alternative is
to use average base cost values. This is reasonable given that
the variation in base costs is small and thus the discrepancy
between the average and actual values will be limited.

B. Inter-Instruction Effects

When sequences of instructions are considered, certain inter-
instruction effects come into play, which are not reflected in
the cost computed solely from base costs. These effects are
discussed below.

Effect of Circuit State: The switching activity in a circuit is
a function of the present inputs and the previous state of the
circuit. Thus, it can be expected that the actual energy cost of
executing an instruction in a program may be different from the
instruction’s base cost. This is because the previous instruction
in the given program and in the program used for base cost
determination may be different. For example, consider a loop
of the following pair of instructions:
XOR BX, 1
ADD AX, DX

The base costs of the XOR and ADD instructions are 319.2
mA and 313.6 mA. The expected base cost of the pair, using
the individual base costs would be their average, i.e., 316.4

TIWARl er al.: POWER ANALYSIS OF EMBEDDED SOFTWARE 441

TABLE 111
AN EXAMPLE INSTRUCTION SEOUENCE

N u m b e r Instruct ion Current (m A) Cycles
1 MOV C X . 1 309.6 1

1 ADD A X ~ B X
x;:; ; 1 ADD DX,8[BXI

SAL A X , I 308.3
5 SAL BX,CL 306.5

mA, while the actual cost is 323.2 mA. It is greater by 6.8
mA. The reason is that the base costs are determined while
executing the same instruction again and again. Thus each
instruction executes in what we expect is a context of least
change. At least, that is what the observations consistently
seem to indicate. When a pair of two different instructions is
considered, the context is one of greater change. The cost of a
pair of instructions is always greater than the base cost of the
pair and the difference is termed as the circuit state overhead.

As another example, consider the sequence of instructions
shown in Table 111. The current cost and the number of cycles
of each instruction is listed alongside. The measured cost for
this sequence is 332.8 mA (avg. current over 10 cycles). Using
base costs we get:

(309.6 + 313.6 + 400.2 x 2 + 308.3 x 3 + 306.5 x 3)/10

= 326.8 (1)

The circuit state overhead is thus 6.0 mA.
It is possible to get a closer estimate if we consider

the circuit state overhead between each pair of consecutive
instructions. This is done as follows. Consider a loop of the
targeted pair, e.g., instructions 2 and 3. The estimated cost
for the pair is (2 x 400.2 +313.6 x 1) /:I = 371.3 mA,
while the measured cost is 374.8 mA. Thus, the circuit state
overhead is 3.5 mA. Now the overhead occurs twice in every
3 cycles, once between instructions 2 & 3, and once between 3
& 2. Since these two different cases cannot be resolved, let us
assume that they are the same. Thus, the overhead each time it
occurs would be 3.5 x $ = 5.25 mA. Similarly, the overhead
between the pairs 1 and 2, 3 and 4, 4 and 5, and 5 and 1 is
found to be 17.9, 12.25, 3.3, and 17.2 mA, respectively. When
these overheads are added to the numerator in (l) , we get an
estimated cost of 332.38 mA, which is within 0.12% of the
measured value.

This example illustrates that by determining costs of pairs
of instructions, it is possible to improve upon the results of the
estimation obtained with base costs alone. However, extensive
experiments with pairs of instructions revealed that the circuit
state overhead has a limited range-between 5.0 mA and 30.0
mA and most frequently occurred in the vicinity of 15.0 mA.
This motivates an efficient yet fairly accurate way to account
for the circuit state overhead. Calculate the average current for
the program using the base costs. Then, add 15.0 mA to it, to
account for circuit state overhead.

A specific manifestation of the effect of circuit state is the
effect of switching that occurs on address and data lines. Our

experiments revealed that the overall impact of this effect was
small. For back-to-back data reads from the cache, greater
switching of the address values led to at most a 3% increase
in the energy cost. For back-to-back data writes (which go to
both the cache and the memory bus since the cache is write-
through), the impact of greater switching of the address values
was less than 5%.

The limited variation in the circuit state overhead is contrary
to popular belief. In fact, a recent work [8], talks about
scheduling instructions to reduce this overhead. But as our
experiments reveal, the methods described in this work will not
have much impact for the 486DX2. The probable explanation
for the limited variation in circuit state overhead is that a major
part of the circuit activity in a complex processor like the
486DX2, is common to all instructions, e.g., instruction pre-
fetch, pipeline control, clocks etc. While the circuit state may
cause significant variation within certain modules, its impact
on the overall energy cost is swamped by the much greater
common cost. However, we would not like to rule out the
impact of circuit state overhead for all processors. It may
well be the case that it is a significant part of the energy
consumption in processors like RISC’s (Reduced Instruction
Set Computers) DSP’s, and processors with complex power
management features. An investigation of this issue is the
subject of our future study.

Effect of Resource Constraints: Resource constraints in the
CPU can lead to stalls e.g. pipeline stalls and write buffer
stalls [6], [7]. These can be considered as another kind of
inter-instruction effect. They cause an increase in the number
of cycles needed to execute a sequence of instructions. For
example, a sequence of 120 MOV DX, [BXI instructions takes
about 164 cycles to execute, instead of 120 due to prefetch
buffer stalls. While determining the base cost of instructions,
it is important to avoid stalls, since they represent a condition
that ought not to be reflected in the base cost. Thus, for
MOV DX, [BX] a sequence consisting of 3 MOV instructions
followed by a NOP is used since there are no stalls during its
execution [7]. Knowing the cost of the NOP and the measured
value for the sequence, the base cost of the MOV is determined.

The energy cost of each kind of stall is experimentally
determined through experiments that isolate the particular kind
of stall, For example, an average cost of 250 mA for stall
cycles was determined for the prefetch buffer stall.

It has been observed that the cost of stalls can show some
variation depending upon the instructions involved in the
stall. Through extensive experimentation it may be possible
to subdivide each stall type into specific cases and to assign
a cost to each case. However, in general, the use of a single
average cost value for each stall type suffices.

To account for the energy cost of the above stalls during
program cost estimation, the number of stall cycles has to be
multiplied by the experimentally determined stall energy cost.
This product is then added to the base cost of the program.
The number of stall cycles i s estimated through a traversal of
the program code.

Effect of Cache Misses: Another inter-instruction effect is
the effect of cache misses. The instruction timings listed in
manuals give the cycle count assuming a cache hit. For a

442 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4. DECEMBER 1994

cache miss, a certain cycle penalty has to be added to the
instruction execution time. Along the same lines, the base
costs for instructions with memory operands are determined
in the context of cache hits. A cache miss will lead to extra
cycles being consumed, which leads to an energy penalty. For
experimentation purposes, a cache miss scenario is created
by accessing memory addresses in an appropriate order. An
average penalty of 216 mA for cache miss cycles has been
experimentally obtained. This has to be multiplied by the
average number of miss penalty cycles to get the average
energy penalty for one miss. The average penalty multiplied
by the cache miss rate is added to the base cost estimate
to account for the cache misses during execution of a pro-
gram.

IV. ESTIMATION FRAMEWORK

In this section we describe a framework for energy esti-
mation of programs using the instruction level power model
outlined in the previous section. We start by illustrating this
estimation process for the program shown in Table IV. The
program has three basic blocks as shown in the figure2. The
average current and the number of cycles for each instruction
are provided in two separate columns. For each basic block,
the two columns are multiplied and the products are summed
up over all instructions in the basic block. This yields a value
that is proportional to the base energy cost of one instance of
the basic block. The values are 1713.4, 4709.8, and 2017.9,
for B1, B2, and B3, respectively. B1 is executed once, B2
4 times and B3 once. The jmp main statement has been
inserted to put the program in an infinite loop. Cost of the
jl L2 statement is not included in the cost of B2 since
its cost is different depending on whether the jump is taken
or not. It is taken 3 times and not taken once. Multiplying
the base cost of each basic block by the number of times it
is executed and adding the cost of the unconditional jump
j 1 L2, we get a number proportional to the total energy
cost of the program. Dividing it by the estimated number
of cycles (72) gives us an average current of 369.1 mA.
Adding the circuit state overhead offset value of 15.0 mA
we get 384.0 mA. The actual measured average current is
385.0 mA. This program does not have any stalls and thus
no further additions to the estimated cost are required. If
in the real execution of this program, some cold-start cache
misses are expected, their energy overhead will have to be
added.

To validate the estimation model described in the previous
section, experiments were conducted with several programs.
A close correspondence between the estimated and measured
cost was obtained. It was observed that the main reasons for
the discrepancy in the estimated and actual cost are as follows:
First, for instructions that require operands, the operand values
and addresses are often not known until runtime. Thus, average
base costs may have to be used instead of exact costs. Second,
the circuit state overhead for pairs of consecutive instructions
in the program may differ from the default value used. Third,

2 A basic block is defined as a contiguous section of code with exactly one
entry and exit point

TABLE IV
ILLUSTRATION OF THE ESTIMATION PROCESS

Program Current(mA) Cycles
; Block E1
main:
mov bp , sp
sub sp,4
mov dx,O
mov word ptr -4CbpI ,O
;Block 82
L2 :
mov si,word ptr -4Cbpl
add si,si
add si,si
mov bx ,dx
mov cx,word ptr -aCsil
add bx, cx
mov si,word ptr -bCsi]
add bx,si
mov dx ,bx
mov di ,word ptr -4 Cbpl
inc di, 1
mov word ptr -4Cbpl ,di
cmp di.4
jl L2
;Block 83
L1:
mov word ptr -sum,dx
mov sp,bp
imp main

285.0 1
309.0 1
309.8 1
404.8 2

433.4 1
309.0 1
309.0 1
285.0 1
433.4 1
309.0 1
433.4 1
309.0 1
285.0 1
433.4 1
297.0 1
560.1 1
313.1 1

405.7(356.9) 3(1)

521.7 1
285.0 1
403.8 3

the penalty due to stalls and cache misses is difficult to predict
statically. As discussed in Section 111, the first two effects are
limited in their impact on the overall cost. The inability to
predict the penalty due to stalls and cache misses, on the other
hand, can potentially have a greater impact on the accuracy
of the estimate. However, for programs with no stalls and
cache misses, the maximum difference between the estimated
and the measured cost was less than 3% of the measured
cost.

A. Overall Flow

The overall flow of the estimation procedure is shown in
Fig. 2. Given an assembly or machine level program, it is first
split up into basic blocks. The base cost of each instance of
the basic block is determined by adding up the base costs of
the instructions in the block. These costs are provided in a
base cost table. The energy overhead due to pipeline, write
buffer and other stalls is estimated for each basic block and
added to the basic block cost. Next, the number of times each
basic block is executed has to be determined. This depends
on the path that the program follows and is dynamic, run-time
information that is obtained from a program profiler. Given
this information, each basic block is multiplied by the number
of times it will be executed. The circuit state overhead is added
to the overall sum at this stage, or alternatively, it could have
been determined for each basic block using a table of energy
costs for pairs of instructions. An estimated cache penalty is
added to get the final estimate. The cache penalty overhead

TIWARI et U/ . : POWER ANALYSIS OF EMBEDDED SOFTWARE 443

[Assembly/Machlne
Code 1

1 Globe1 Program Cost

(Cache Simulation)

Fig. 2. Software energy consumption estiniation methodology.

computation needs an estimate of the miss ratio, which is
obtained through a cache simulator.

V. MEMORY SYSTEM MODELING

The energy consumption in the memory system is also a
function of the software being executed. The salient observa-
tions regarding the DRAM system current on our experimental
setup are briefly described here. Details are provided in [111.

The DRAM system draws constant current when no memory
access is taking place. This current value was determined to
be 77.0 mA or 5.3 mA, depending on whether page mode
was active or not.3 Greater current is drawn during a memory
access. 'The exact value of this current depends on the address
of the present and previous memory access. For example, for
writes, when both the previous and the present access map to
the same page, i.e., for a page hit, the cost is 122.8 mA (for
3 cycles including 1 wait state). For a page miss, the cost is
247.8 mA (for 6 cycles including 4 wait states). For page hits,
a smaller variation was observed depending on the number of
bits that change from the previous address to the present.

Let X be the sum of the energy costs of each individual
memory access. Let 7~ and m bc the number of memory idle
cycles during which the page mode is active and inactive,
respectively. The total memory system energy cost is given
by, (X -t (77.0 x 71 f5 .3 x m) x 8.25 x 10-8).7. As discussed
above, the quantity X depends on the locaticin and sequence
of memory accesses made by the program. Along with n and
m, this is dynamic, run-time information, which can only

"'Page mode active" refers to the condition when the row address has been
latched and the Row Address Strobe (RAS) signal is actlve.

be loosely estimated by static analysis. Thus, modeling of
memory system energy consumption is difficult if only static
analysis is used. However, as the above discussion shows,
analysis of this consumption is feasible. This is significant,
given that for systems with tight energy budgets, it is important
to understand all sources of energy consumption.

VI. SOFTWARE POWER OPTIMIZATION

In recent years there has been a spurt of research activ-
ity targeted at reducing the energy consumption in systems.
This research, however, has by and large not recognized
the potential energy savings achievable through optimization
of software. This was mainly due to the lack of practical
techniques for analyzing the energy consumption of programs.
This deficiency has been alleviated by the measurement and
estimation methodology described in the previous sections.
The growing trend towards tight energy budgets necessitates
identification and exploration of every possible source of
energy reduction, forcing us to examine the design of energy
efficient software.

The energy formula described in Section 11-A shows that
the energy cost of a program is proportional to the product of
the average current and the running time of the program. Thus,
the value of this product has to be reduced in order to reduce
the energy cost. This section examines some alternatives for
this, in the context of the 486DX2, using the results of the
instruction level analysis that was described earlier.

A. Instruction Reordering

A recent work [8] presents a technique for scheduling
instructions on an experimental RlSC processor in such a way
that the switching on the control path is minimized. In terms
of the energy formula, this technique is trying to reduce the
average current for the program through instruction reordering.

Our experiments based on actual energy measurements on
the 486DX2, however, reveal that this technique does not
translate into very significant overall energy reduction. This
technique is trying to reduce what we termed as the circuit
state overhead. As we saw earlier, this quantity is bounded by
a small range and does not show a great amount of variation.
In fact, it was observed that different reorderings of several
sequences of instructions showed a variation of only up to 2%
in their current cost. It can be concluded that this technique is
not very effective for the 486DX2. However, its effectiveness
on other architectures and processors should be investigated
further.

B. Generation of Energy ESJicient Code

While reordering of a given set of instructions in a piece
of code may have only a limited impact on the energy
cost, the actual choice of instructions in the generated code
can significantly affect the cost. As a specific example, an
inspection of the energy costs of 486DX2 instructions reveals
that instructions with memory operands have very high av-
erage current compared to instructions with register operands.
Instructions using only register operands cost in the vicinity of
300 mA. Memory reads that hit the cache cost upwards of 430

444

hhtl.asm hht2.asm
534.2 507.6
9.37 8.73
16.52 14.62

chtl.asm cht2.asm
527.9 516.3
5.88 5.08
10.24 8.65

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4, DECEMBER 1994

hht3.asm
486.6
7.07
11.35

cht3.asm
514.8
4.93
8.37

TABLE V
RESULTS OF ENERGY OPTIMIZATION OF SORT AND CIRCLE

Program
Avg. Current (mA)

Execution Time (pee)
Energy (10-6J)

Avg. Current (mA)
Execution Time (psec)

Energy (10-6J)

Program

h lcc . a m
525.7
11.02
19.12

clcc .a."
530.2
7.18
12.56

mA. Memory writes cost upwards of 530 mA and also incur a
memory system current cost since the cache is write-through.
Thus, reduction in the number of memory operands can lead
to a reduction in average current.

The reduction in energy cost, i.e., in the product of average
current and running time would be greater still, since use
of memory operands incurs more cycles. For example, ADD
DX, [BX I takes two cycles, even in the case of a cache hit,
while ADD DX, BX takes just one cycle. Potential pipeline
stalls, misaligned accesses, and cache misses, further add to the
running time. Reduction in number of memory operands can
be achieved by adopting suitable code generation policies, e.g.
saving the least amount of context during function calls. How-
ever, the most effective way of reducing memory operands is
through better utilization of registers. This entails techniques
akin to optimal global register allocation of temporaries and
frequently used variables [l] [2].

The impact of the above ideas on the energy cost of
programs is illustrated here using examples. The first program
considered is a heapsort program in C, called "sort" [3].
hlcc . asm is the assembly code for this program generated
by lcc, an A N S I C compiler [4]. The sum of the observed
average CPU and memory currents is given in the table above.
The program execution times and overall energy costs are
also reported. lcc is a general purpose compiler and while
it produces good code, it leaves room for further improvement
of running time. Hand tuning of the code for shorter running
time (hhtl) leads to a 15% reduction in running time. The
average current goes up a little since of all the instructions
that were eliminated, a greater proportion had lower average
currents. However, due to the reduction in running time,
the overall energy cost goes down by 13.5%. So far only
temporary variables had been allocated to registers. In hht2,
3 local variables are allocated to registers and the appropriate
memory operands are replaced by register operands. Even
though redundant instructions are not removed, there is a 5 %
reduction in current and a 7% reduction in running time. In
hht3, 2 more local variables are allocated to registers and all
redundant instructions are removed. Compared to hlcc, hht 3
has 40.6% lower energy consumption. Results for another
program derived from the circle program [5] are also
shown in Table V. Significant energy reduction, about 33%,
are observed for this program too.

The specific optimizations used in the above examples were
prompted by the results of the instruction level analysis of
the 486DX2. They are discussed in greater detail in [IO].
In general, the ideas used for energy efficient code for one
processor may not hold for another. An instruction level
analysis, using the methodology described earlier, should
therefore be performed for each processor under consideration.
That methodology provides a way for assigning energy costs
to instructions. The idea behind energy driven code generation
is to select instructions using these costs, such that the overall
energy cost of a program is minimized. An investigation of this
issue for different architectural styles will be pursued further
as part of research in the area of software power optimization.

VII. ANALYSIS OF SPARClite 934

The previous sections describe the application of the power
analysis methodology for the 486DX2, a CISC processor.
To verify the general applicability of this methodology, it
was decided to apply the methodology to a processor with
a different architectural style. The Fujitsu SPARClite 934,
a RISC processor targeted for embedded applications was
chosen for this purpose. A power analysis of this processor has
been performed using the measurement and experimentation
techniques described in the previous sections. The basic model
of a base energy cost per instruction, enhanced by the inter-
instruction effects remains valid for this processor, though the
actual costs differ in value. The details of this analysis are
described in [9].

VIII. SUMMARY AND FUTURE WORK

This paper presents a methodology for analyzing the en-
ergy consumption of embedded software. It is based on an
instruction level model that quantifies the energy cost of
individual instructions and of the various inter-instruction
effects. The motivation for the analysis methodology is three-
fold. It provides insights into the energy consumption in
processors. It can be used to help verify if an embedded design
meets its energy constraints and it can also be used to guide
the design of embedded software such that i t meets these
constraints. Initial attempts at code re-writing demonstrate
significant power reductions-justifying the motivation for
such a power analysis technique.

The methodology has so far been applied to two com-
mercial processors, a CISC and a RISC. Future work will
extend this to other architecture styles to characterize and
contrast their energy consumption models. DSPs, superscalar
processors, and processors with intemal power management
will be considered. Finally, we hope to use this analysis in
automatic techniques for the reduction of power consumption
in embedded software.

ACKNOWLEDGMENT

We would like to thank D. Singh, S. Rajgopal, and T. Rossi
of Intel for providing us with the 486DX2 evaluation board;
M. Tien-Chien Lee, M. Fujita, and D. Maheshwari of Fujitsu
for helping make the SPARClite analysis possible; C. Fraser

TIWAR1 et al.: POWER ANALYSIS OF EMBEDDED SOFTWARE 445

of
for

AT&T Bell Labs and D. Hanson of Princeton University
* the 486 code generator.

REFERENCES

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques
and Tools.
M. Benitez and J. Davidson, “A retargetable integrated code improver,”
Tech. Rep. CS-93-64, Univ. of Virginia, Dept of Computer Sci., Nov.
1993.
Press er al., Numerical Recipes in C. Cambridge, MA: Cambridge
Univ., 1988.
C. W. Fraser and D. R. Hanson, “A retargetable compiler for ANSI C,”
SIGPLAN Notices, pp. 2 9 4 3 , Oct., 1991.
R. Gupta, “CO-synthesis of hardware. and software for digital embed-
ded systems,” Ph.D. dissertation, Dept. of Electrical Eng., Stanford
University, CA, 1993.
Intel Corp., i486 Microprocessor, Hardware Reference Manual, 1990.
Intel Corp., Intel486 Microprocessor Family, Programmer’s Reference
Manual, 1992.
C. I,. Su, C. Y. Tsui, and A. M. Despain, “Low power architecture
design and compilation techniques for high-performance processors,” in
IEEE COMPCON, Feb. 1994.
V. Tiwari, T. C. Lee, M. Fujita, and D. Maheshwari, “Power analysis
of the SPARClite MB86934,” Tech. Rep. FLA-CAD- 94-01, Fujitsu Labs
of America, Aug. 1994.
V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low
energy: An overview,” in Proc. 1994 Symp. Low Power Electron., Oct.
1994.
V. Tiwari, S. Malik, A. Wolfe, “Power analysis of the Intel 486DX2,”
Tech. Rep. CE-M94-5, Princeton Univ., Dept. of Elect. Eng., June, 1994.

Reading, MA: Addison Wesley, 1988.

Vivek Tiwari received the B. Tech degree in com-
puter science and engineering from the Indian In-
stitute of Technology, New Delhi, India in 1991.
Currently he is working towards the Ph.D. degree in
the Department of Electrical Engineering, Princeton
University, Princeton, NJ.

His research interests are in the areas of computer
aided design of VLSI and embedded systems and
in nucroprocessor architecture The focus of his
current research is on tools and techniques for power
estimation and low power design. He has held

summer positions at NEC Research Labs, Intel Corporation, and FUjitSU Labs
of America, in 1992, 1993, and 1994, respectively, where he worked on the
above topics.

Mr. Tiwari received the IBM Graduate Fellowship award in 1993 and
1994.

Sharad Malik received the B. Tech. degree in
electrical engineering from the Indian Institute of
Technology, New Delhi, India in 1985 and the M.S.
and Ph.D. degrees in computer science from the
University of California, Berkeley in 1987 and 1990
respectively.

Currently he is an Assistant Professor with
the Department of Electrical Engineering, Princeton
University. His current research interests are in the
synthesis and verification of digital systems.
Dr. Mal& has received the President of India’s

Gold Medal for academic excellence (1985), the IBM Faculty Development
Award (1991). an NSF Research Initiation Award (1992). a Best Paper
Award at the IEEE International Conference on Computer Design (1992).
the Princeton University Engineering Council Excellence in Teaching Award
(1993, 1994), the Walter C. Johnson Prize for Teaching Excellence (1993),
Princeton University Rheinstein Faculty Award (1994), and the NSF Young
Investigator Award (1994).

Professor at Princeton
embedded systems arch

Andrew Wolfe received the B.S.E.E. from the Johns
Hopkins University in 1985 and the M.S. and Ph.D.
degrees from Carnegie Mellon University in 1987
and 1992, respectively. His doctoral dissertation
introduced a new model for instruction-level parallel
processor architecture called XIMD.

He was a Semiconductor Research Corporation
Fellow from 1986 to 1991. He has also worked as a
processor designer at ESL/TRW in Sunnyvale, CA
and as a product design consultant for numerous
companies. Since 1991, he has been an Assistant

University. His current research interests include
itectures and design tools, instruction-level parallelism,

and video-signal processors.
Dr. Wolfe has served as General Chair of Micro-26 and as Program Chair of

Micro-24 as well as serving on the technical committees of several ICCD and
Micro conferences. He has presented tutorials on instruction-level parallelism
at ASPLOS V and ISCA 20 as well as a tutorial on embedded systems at
ICCD ’93.

