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Power Analysis of Embedded Software: A First 
Step Towards Software Power Minimization 

Vivek Tiwari, Sharad Malik, and Andrew Wolfe 

Abstruct- Embedded computer systems are characterized by 
the presence of a dedicated processor and the software that 
runs on it. Power constraints are increasingly becoming the 
critical component of the design specification of these systems. 
At present, however, power analysis tools can only be applied 
at the lower levels of the design-the circuit or gate level. It is 
either impractical or impossible to use the lower level tools to 
estimate the power cost of the software component of the system. 
This paper describes the first systematic attempt to model this 
power cost. A power analysis technique is developed that has 
been applied to two commercial microprocessors-Intel 486DX2 
and Fujitsu SPARClite 934. This technique can be employed to 
evaluate the power cost of embedded software. This can help 
in verifying if a design meets its specified power constraints. 
Further, it can also be used to search the design space in software 
power optimization. Examples with power reduction of up to 
40%, obtained by rewriting code using the information provided 
by the instruction level power model, illustrate the potential of 
this idea. 

I. INTRODUCTION 
MBEDDED COMPUTER systems are characterized by E the presence of a dedicated processor which executes 

application specific software. Recent years have seen a large 
growth of such systems. This growth is driven by several 
factors. The first is an increase in the number of applications 
as illustrated by the numerous examples of “smart electronics” 
around us. A notable example is automobile electronics where 
embedded processors control each aspect of the efficiency, 
comfort and safety of the new generation of cars. The second 
factor leading to their growth is the increasing migration 
from application specific logic to application specific code 
running on existing processors. This in turn is driven by two 
distinct forces. The first is the increasing cost of setting up and 
maintaining a fabrication line. At over a billion dollars for a 
new line, the only components that make this affordable are 
high volume parts such as processors, memories and possibly 
FPGA’s. Application specific logic is getting increasingly 
expensive to manufacture and is the solution only when speed 
constraints rule out programmable alternatives. The second 
force comes from the application houses, which are facing 
increased pressures to reduce the time to market as well as 
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to have predictable schedules. Both of these can be better 
met with software programmable solutions made possible by 
embedded systems. Thus, we are seeing a movement from the 
logic gate being the basic unit of computation on silicon, to 
an instruction running on an embedded processor. 

A large number of embedded computing applications are 
power critical, i.e., power constraints form an important part of 
the design specification. This has led to a significant research 
effort in power estimation and low power design. However, 
there is very little available in the form of design tools to help 
embedded system designers evaluate their designs in terms of 
the power metric. At present, power measurement tools are 
available for only the lower levels of the design-at the circuit 
level and to a limited extent at the logic level. At the least 
these are very slow and impractical to use to evaluate the 
power consumption of embedded software, and often cannot 
even be applied due to lack of availability of circuit and gate 
level information of the embedded processors. The embedded 
processors currently used in designs take two possible shapes. 
The first is “off the shelf’ microprocessors or digital signal 
processors (DSP’s). The second is in the form of embedded 
cores which can be incorporated in a larger silicon chip along 
with program/data memory and other dedicated logic. In the 
first case, the processor information available to the designer 
is whatever the manufacturer cares to make available through 
data books. In the second case, the designer has logidtiming 
simulation models to help verify the designs. In neither case 
is there lower level information available for power analysis. 

This paper describes a power analysis technique for em- 
bedded software. The goal of this research is to present 
a methodology for developing and validating an instruction 
level power model for any given processor. Such a model 
can then be provided by the processor vendors for both off 
the shelf processors as well as embedded cores. This can 
then be used to evaluate embedded software, much as a gate 
level power model has been used to evaluate logic designs. 
The technique has so far been applied to two commercial 
microprocessors-the Intel 486DX2 and the Fujitsu SPARClite 
934. This paper uses the former as a basis for illustrating the 
technique. The application of this technique for the latter is 
described in [9]. The ability to evaluate software in terms 
of the power metric helps in verifying if a design meets its 
specified power constraints. In addition, it can also be used 
to search the design space in software power optimization. 
Examples with power reduction of up to 40% on the 486DX2, 
obtained by rewriting code using the information provided by 
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the instruction level power model, illustrate the potential of 
this idea. 

11. EXPERIMENTAL METHOD 

The power consumption in microprocessors has been a 
subject of intense study lately. Attempts to model the power 
consumption in processors often adopt a “bottom-up’’ ap- 
proach. Using detailed physical layouts and sophisticated 
power analysis tools, isolated power models are built for each 
of the internal modules of the processor. The total power 
consumption of the processor is then estimated using these 
individual models. No systematic attempt, however, has been 
made to relate the power consumption of the processor to 
the software that executes on it. Thus, while it is generally 
recognized that the power consumption of a processor vanes 
from program to program, there is a complete lack of models 
and tools to analyze this variation. This is also the reason 
why the potential for power reduction through modification 
of software is so far unknown and unexploited. The goal of 
our work is to overcome these deficiencies by developing a 
methodology that would provide a means for analyzing the 
power consumption of a processor as it executes a given 
program. We want to provide a method that makes it possible 
to talk about the “power/energy cost of a given program 
on a given processor.” This would make it possible to very 
accurately evaluate the power cost of the programmable part 
of an embedded system. 

We propose the following hypothesis that forms the basis 
for meeting the above goal: By measuring the current drawn 
by the processor as it repeatedly executes certain instructions 
or certain short instruction sequences, it is possible to obtain 
most of the information that is needed to evaluate the power 
cost of a program for that processor. 

The intuition that guides this hypothesis is as follows: 
Modern microprocessors are extremely complex systems con- 
sisting of several interacting functional blocks. However, this 
internal complexity is hidden behind a simple interface-the 
instruction set. Thus to model the energy consumption of 
this complex system, it seems intuitive to consider individual 
instructions. Further, each instruction involves specific pro- 
cessing across various units of the processor. This can result 
in circuit activity that is characteristic of each instruction and 
can vary with instructions. If a given instruction is executed 
repeatedly, then the power consumed by the processor can 
be thought of as the power cost of that instruction. In a 
given program, certain inter-instruction effects also occur, 
such as the effect of circuit state, pipeline stalls and cache 
misses. Repeatedly executing certain instruction sequences 
during which these effects occur may provide a way to isolate 
the power cost of these effects. Thus the sum of the power 
costs of the each instruction that is executed in a program 
enhanced by the power cost of the inter-instruction effects can 
be an estimate for the power cost of the program. 

The above hypothesis, however, is of no use until it is 
validated. We have empirically validated the hypothesis for 
two commercial microprocessors using actual physical mea- 
surements of the current drawn by them. The validation of the 

hypothesis, and based on it, the derivation of the parameters 
of an instruction level power model for the Intel 486DX2, is 
the subject of the next few sections. 

Given that the above hypothesis has been validated for two 
processors using physical measurements, there is an alternative 
way for deriving the parameters of the instruction level power 
model. Instead of physically measuring the current drawn 
by the CPU, it can be estimated using accurate, simulation 
based power analysis tools. The execution of the given instruc- 
tiodinstruction sequence is simulated on lower level (circuit 
or layout) models of the CPU, and the power analysis tool 
provides an estimate of the current drawn. The advantage of 
this method is that since detailed internal information of the 
CPU is available, it may be possible to relate the power cost 
of the instructions to the micro-architecture of the CPU. This 
could provide cues to the CPU designer for optimizing the 
designs for low power. 

However, in the case of embedded system design, detailed 
layout information of the CPU is often not available to the 
designer of the system. Even if it is available, the simulation 
based tools and techniques are expensive and difficult to apply. 
A methodology based on laboratory measurements, like the 
one described below, is inexpensive and practical, and often 
may be the only option available. Given a setup to measure 
the current being drawn by the microprocessor, the only other 
information required can be obtained from the widely available 
manuals and handbooks specific to that microprocessor. The 
specifics of the measurement methodology are described next. 

A. Power and Energy 

The average power consumed by a microprocessor while 
running a certain program is given by: P = I x VCC, where 
P is the average power, I is the average current and VCC is 
the supply voltage. Since power is the rate at which energy 
is consumed, the energy consumed by a program is given by: 
E = P x T ,  where T is the execution time of the program. 
This in turn is given by: T = N x T ,  where N is the number 
of clock cycles taken by the program and T is the clock period. 

In common usage the terms power consumption and energy 
consumption are often interchanged, as has been done in 
the above discussion. However it is important to distinguish 
between the two in the context of programs running on 
mobile applications. Mobile systems run on the limited energy 
available in a battery. Therefore the energy consumed by the 
system or by the software running on it determines the length 
of the battery life. Energy consumption is thus the focus of 
attention. We will attempt to maintain a distinction between 
the two terms in the rest of the paper. However, in certain cases 
the term power may be used to refer to energy, in adherence 
to common usage. 

B. Current Measurement 

For this study, the processor used was a 40 MHz Intel 
486DX2-S Series CPU. The CPU was part of a mobile 
personal computer evaluation board with 4 MB of DRAM 
memory. The reason for the choice of this processor was that 
its board setup allowed the measurement of the CPU and 
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DRAM subsystem current in isolation from the rest of the 
system. We would like to emphasize that while the numbers 
we report here are spec@c to this processor and board, the 
methodology used by us in developing the model is widely 
applicable. The current was measured through a standard off 
the shelf, dual-slope integrating digital ammeter. Execution 
time of programs was measured through detection of specific 
bus states using a logic analyLer. 

If a program completes execution in a short time, a current 
reading cannot be obtained visually. To overcome this, the 
programs being considered were put in infinite loops and 
current readings were taken. The current consumption in the 
CPU will vary in time depending on what instructions are 
being executed. But since the chosen ammeter averages current 
over a window of time (100 ms), if the execution time of the 
program is much less than the width of this window, a stable 
reading will be obtained. 

The main limitation of this approach is that it will not work 
for programs with larger execution times since the ammeter 
may not show a stable reading. However, in this study, the 
main use of this approach was in determining the current 
drawn while a particular instruction (instruction sequence) was 
being executed. A program written with several instances of 
the targeted instruction (instruction sequence) executing in a 
loop, has a periodic current waveform which yields a steady 
reading on the ammeter. This inexpensive approach works very 
well for this. However, the main concepts described in this 
paper are independent of the actual method used to measure 
average current. If sophisticated data acquisj tion based mea- 
surement instruments are available, the measurement method 
can be based on them. 

For our setup, Vcc was 3.3 V and r was 25 ns, correspond- 
ing to the 40 MHz internal frequency of the CPU. Thus, if the 
average current for an instruction sequence is I A, and the 
number of cycles it takes to execute is N ,  the energy cost of 
the sequence is given by: E = I x V& x N x r ,  which equals: 
(8.25 x lo-* x I x N )  J. Throughout the rest of the paper, in 
order to specify the energy cost of an instruction (instruction 
sequence), the average current will be specified. The number 
of cycles will either be explicitly specified, or will be clear 
from the context. 

111. INSTRUCTION LEVEL MODELING 

Based on the hypothesis described in Section 11, an instruc- 
tion level energy model has been developed and validated 
for the 486DX2. Under this model each instruction in the 
instruction set is assigned a fixed energy cost called the base 
energy cost. The variation in base costs of a given instruction 
due to different operand and address values is then quantified. 
The base energy cost of a program is based on the sum of 
the base energy costs of each executed instruction. However, 
during the execution of a program, certain inter-instruction 
effects occur whose energy contribution is not accounted for 
if only base costs are considered. The first type of inter- 
instruction effect is the effect of circuit state. The second type 
is related to resource constraints that can lead to stalls and 
cache misses. The energy cost of these effects is also modeled 
and used to obtain the total energy cost of a program. 

STAGE U 1 2 3 4 5 I INSTRUCTION ‘1 DECODE-1 11 DECODE-2 1/ EXECUTION 11 w\L:fi:zK 1 
FETCH 

Fig 1 Intemal pipelining in the 486DX2 

The instruction-level energy model described here is based 
on actual measurements and evolved as a result of extensive 
experimentation. The various components of this model are 
described in the subsections below. 

A.  Base Energy Cost 

The base cost for an instruction is determined by construct- 
ing a loop with several instances of the same instruction. The 
average current being drawn is then measured. This current 
multiplied by the number of cycles taken by each instance of 
the instruction is proportional to the total energy as described 
in Section 11. 

While this method seems intuitive if the CPU executes only 
one instruction at a given time, most modern CPU’s, including 
the 486DX2, process more than one instruction at a given time 
due to pipelining. However, the following discussion shows 
that the concept of a base energy cost per instruction and its 
derivation remains unchanged. 

The 486DX2 CPU has a five-stage pipeline as shown in 
Fig. 1 [6]. Let E ~ I ~  be the average energy consumed by 
pipeline stage j, when instruction I k  executes in that stage. 
Pipeline stages are separated from each other by latches. 
Thus, if we ignore the effect of circuit state and resource 
constraints for now, the energy consumption of different stages 
is independent of each other. Let us assume that in a given 
cycle, instruction I1 is being processed by stage 1, I2 by stage 
2 ,  and so on. The total energy consumed by the CPU in that 
cycle would be: Ecyrle = E ~ I ]  + E21, + E31, + E ~ I ,  + EST,. 
On the other hand, the total energy consumed by a given 
instruction I I ,  as it moves through the various stages is: 
Eins = cj Ejl1.  This quantity actually refers to the base 
cost in the sense described above. Our method of forming a 
loop of instances of instruction I I ,  results in E,?,,~, = E;,,, 
since in that case, 11 = 12 = 13 = I, = 15. The average 
current in this case is Cj Ej1, /(V& x r ) ,  which is the same 
as the ammeter reading obtained. 

Some instructions take multiple cycles in a given pipeline 
stage. All stages are then stalled. The reasoning applied 
above, however, remains unchanged. The base energy cost 
of the instruction is just the observed average current value 
multiplied by the number of cycles taken by the instruction 
in that stage. For instance, consider a loop of instruction 
11, where II takes ni cycles in the 4th stage. Therefore, 
E41, is spread over fm cycles. Energy consumption in any 
of the stalled stages can be considered as a part of E41,. 
Then the current value observed on the ammeter will be 
E, Ej l ,  /( V& x r x m). This quantity multiplied by T I L  yields xi. Ej~,/(Vcc x r ) ,  the base energy cost of the instruction. 
711 represents the “number of cycles” parameter specified in 
instruction timing tables in microprocessor manuals. 
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No. of 1’s 
Current(mA) 

TABLE I 
SUBSET OF THE BASE COST TABLE FOR THE 486DX2’ 

1 Number I Instruction I Current I Cycles 1 
0 4 8 12 16 

309.5 305.2 300.1 294.2 288.5 
U U 

n 12 I LEA DX, [BXI J I1 

~~ 

17 I CMP BX,DX I 298.2 I 1 
18 I CMP CSX1,DX I 388.0 I 2 

Table I is a sample table of CPU base costs for some 
486DX2 instructions. The numbers in Column 3 are the 
observed average current values. The overall base energy cost 
of an instruction is the product of the numbers in Columns 3 
and 4 and the constants VCC and r. A rigorous confidence 
interval was not determined for the current measurement 
apparatus. However, it was observed that repeated runs of 
an experiment at different times resulted in only a very small 
variation in the observed average current values. The variation 
was in the range of f l  mA. 

Care should be taken in designing the experiments used to 
determine the base costs. The loops that are used to determine 
the base costs of instructions have to satisfy certain size 
constraints. As more of the target instructions are put in the 
loop, the impact of the branch statement at the bottom of the 
loop is minimized. The observed current value thus converges 
with increasing loop size. Thus, the loop size should be large 
enough in order to obtain the converged value. Very large 
loops, on the other hand, may cause cache misses, which 
are undesirable during determination of base costs. A loop 
size of 120, which satisfies both the above constraints, was 
chosen. Only the target instructions should execute on the CPU 
during experiments, and thus system effects like multiple time- 
sharing applications and interrupts cannot be allowed during 
the experiments. 

Variations in Base Cost: As Table I shows, instructions 
with differing functionality and different addressing modes 
can have very different energy costs. This is to be expected 
since different functional blocks are being affected in different 
ways by these instructions. Within the same family of 
instructions, there is variability in base costs depending on 
the value of operands used. For example, consider the MOV 

‘AI1 instructions are executed in “Real Mode”. AI1 registers contain 0, 
except in entry 1 1 ,  where CL contains 1 .  Entry 15 is a “taken” jump while 
entry 16 is “fall through’. Entries 5 ,  6, and 9 show normalized costs [ I  I ] .  

TABLE I1 
BASE COSTS OF MOV BX, DATA 

data 1 0 1  OF I OFF I OFFF I OFFFF 1 

register,immediate family. Use of different registers results 
in insignificant variation since the register file is probably 
a symmetric structure. Variation in the immediate value, 
however, leads to measurable variation. For example, for 
MOV BX, immediate, the costs seem to be almost a linear 
function of the number of 1’s in the binary representation 
of the immediate data-the more the l ’s ,  the lesser the cost. 
Table I1 illustrates this through some sample values. Similarly, 
for the ADD instruction, the base costs are a function of the 
two numbers being added. The range of variation in all cases, 
however, is small. It is observed to be about 14 mA, which 
corresponds to less than a 5% variation. 

For instructions involving memory operands, there is a 
variation in the base cost depending upon the address of the 
operand. The variation is of two kinds. The first is due to 
operands that are misaligned [6]. Mis-aligned accesses lead 
to cycle penalties and thus energy penalties that are added to 
the base cost. Within aligned accesses there is variation in 
the base cost depending upon the value of the address. For 
example, for MOV DX, [BXI , the base cost can be greater 
than the cost shown in Table I by about 3.5%. This variation is 
a function of the number of, and position of, 1’s in the binary 
representation of the address. 

Given the operand value and address, exact base costs can be 
obtained through direct measurements. However, these exact 
values will be of little use since typically a data or address 
value can be known only at run-time. Thus, from the point of 
view of program energy cost estimation, the only alternative is 
to use average base cost values. This is reasonable given that 
the variation in base costs is small and thus the discrepancy 
between the average and actual values will be limited. 

B. Inter-Instruction Effects 

When sequences of instructions are considered, certain inter- 
instruction effects come into play, which are not reflected in 
the cost computed solely from base costs. These effects are 
discussed below. 

Effect of Circuit State: The switching activity in a circuit is 
a function of the present inputs and the previous state of the 
circuit. Thus, it can be expected that the actual energy cost of 
executing an instruction in a program may be different from the 
instruction’s base cost. This is because the previous instruction 
in the given program and in the program used for base cost 
determination may be different. For example, consider a loop 
of the following pair of instructions: 
XOR BX, 1 
ADD AX, DX 

The base costs of the XOR and ADD instructions are 319.2 
mA and 313.6 mA. The expected base cost of the pair, using 
the individual base costs would be their average, i.e., 316.4 
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TABLE 111 
AN EXAMPLE INSTRUCTION SEOUENCE 

N u m b e r  Instruct ion Current ( m A )  Cycles  
1 MOV C X . 1  309.6 1 

1 ADD A X ~ B X  
x;:; ; 1 ADD DX,8[BXI 

SAL A X , I  308.3 
5 SAL BX,CL 306.5 

mA, while the actual cost is 323.2 mA. It is greater by 6.8 
mA. The reason is that the base costs are determined while 
executing the same instruction again and again. Thus each 
instruction executes in what we expect is a context of least 
change. At least, that is what the observations consistently 
seem to indicate. When a pair of two different instructions is 
considered, the context is one of greater change. The cost of a 
pair of instructions is always greater than the base cost of the 
pair and the difference is termed as the circuit state overhead. 

As another example, consider the sequence of instructions 
shown in Table 111. The current cost and the number of cycles 
of each instruction is listed alongside. The measured cost for 
this sequence is 332.8 mA (avg. current over 10 cycles). Using 
base costs we get: 

(309.6 + 313.6 + 400.2 x 2 + 308.3 x 3 + 306.5 x 3)/10 

= 326.8 (1) 

The circuit state overhead is thus 6.0 mA. 
It is possible to get a closer estimate if we consider 

the circuit state overhead between each pair of consecutive 
instructions. This is done as follows. Consider a loop of the 
targeted pair, e.g., instructions 2 and 3. The estimated cost 
for the pair is ( 2 x  400.2 +313.6 x 1) /:I = 371.3 mA, 
while the measured cost is 374.8 mA. Thus, the circuit state 
overhead is 3.5 mA. Now the overhead occurs twice in every 
3 cycles, once between instructions 2 & 3, and once between 3 
& 2. Since these two different cases cannot be resolved, let us 
assume that they are the same. Thus, the overhead each time it 
occurs would be 3.5 x $ = 5.25 mA. Similarly, the overhead 
between the pairs 1 and 2, 3 and 4, 4 and 5, and 5 and 1 is 
found to be 17.9, 12.25, 3.3, and 17.2 mA, respectively. When 
these overheads are added to the numerator in ( l ) ,  we get an 
estimated cost of 332.38 mA, which is within 0.12% of the 
measured value. 

This example illustrates that by determining costs of pairs 
of instructions, it is possible to improve upon the results of the 
estimation obtained with base costs alone. However, extensive 
experiments with pairs of instructions revealed that the circuit 
state overhead has a limited range-between 5.0 mA and 30.0 
mA and most frequently occurred in the vicinity of 15.0 mA. 
This motivates an efficient yet fairly accurate way to account 
for the circuit state overhead. Calculate the average current for 
the program using the base costs. Then, add 15.0 mA to it, to 
account for circuit state overhead. 

A specific manifestation of the effect of circuit state is the 
effect of switching that occurs on address and data lines. Our 

experiments revealed that the overall impact of this effect was 
small. For back-to-back data reads from the cache, greater 
switching of the address values led to at most a 3% increase 
in the energy cost. For back-to-back data writes (which go to 
both the cache and the memory bus since the cache is write- 
through), the impact of greater switching of the address values 
was less than 5%. 

The limited variation in the circuit state overhead is contrary 
to popular belief. In fact, a recent work [8], talks about 
scheduling instructions to reduce this overhead. But as our 
experiments reveal, the methods described in this work will not 
have much impact for the 486DX2. The probable explanation 
for the limited variation in circuit state overhead is that a major 
part of the circuit activity in a complex processor like the 
486DX2, is common to all instructions, e.g., instruction pre- 
fetch, pipeline control, clocks etc. While the circuit state may 
cause significant variation within certain modules, its impact 
on the overall energy cost is swamped by the much greater 
common cost. However, we would not like to rule out the 
impact of circuit state overhead for all processors. It may 
well be the case that it is a significant part of the energy 
consumption in processors like RISC’s (Reduced Instruction 
Set Computers) DSP’s, and processors with complex power 
management features. An investigation of this issue is the 
subject of our future study. 

Effect of Resource Constraints: Resource constraints in the 
CPU can lead to stalls e.g. pipeline stalls and write buffer 
stalls [6], [7]. These can be considered as another kind of 
inter-instruction effect. They cause an increase in the number 
of cycles needed to execute a sequence of instructions. For 
example, a sequence of 120 MOV DX, [ BXI instructions takes 
about 164 cycles to execute, instead of 120 due to prefetch 
buffer stalls. While determining the base cost of instructions, 
it is important to avoid stalls, since they represent a condition 
that ought not to be reflected in the base cost. Thus, for 
MOV DX,  [BX] a sequence consisting of 3 MOV instructions 
followed by a NOP is used since there are no stalls during its 
execution [7]. Knowing the cost of the NOP and the measured 
value for the sequence, the base cost of the MOV is determined. 

The energy cost of each kind of stall is experimentally 
determined through experiments that isolate the particular kind 
of stall, For example, an average cost of 250 mA for stall 
cycles was determined for the prefetch buffer stall. 

It has been observed that the cost of stalls can show some 
variation depending upon the instructions involved in the 
stall. Through extensive experimentation it may be possible 
to subdivide each stall type into specific cases and to assign 
a cost to each case. However, in general, the use of a single 
average cost value for each stall type suffices. 

To account for the energy cost of the above stalls during 
program cost estimation, the number of stall cycles has to be 
multiplied by the experimentally determined stall energy cost. 
This product is then added to the base cost of the program. 
The number of stall cycles i s  estimated through a traversal of 
the program code. 

Effect of Cache Misses: Another inter-instruction effect is 
the effect of cache misses. The instruction timings listed in 
manuals give the cycle count assuming a cache hit. For a 



442 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 2, NO. 4. DECEMBER 1994 

cache miss, a certain cycle penalty has to be added to the 
instruction execution time. Along the same lines, the base 
costs for instructions with memory operands are determined 
in the context of cache hits. A cache miss will lead to extra 
cycles being consumed, which leads to an energy penalty. For 
experimentation purposes, a cache miss scenario is created 
by accessing memory addresses in an appropriate order. An 
average penalty of 216 mA for cache miss cycles has been 
experimentally obtained. This has to be multiplied by the 
average number of miss penalty cycles to get the average 
energy penalty for one miss. The average penalty multiplied 
by the cache miss rate is added to the base cost estimate 
to account for the cache misses during execution of a pro- 
gram. 

IV. ESTIMATION FRAMEWORK 

In this section we describe a framework for energy esti- 
mation of programs using the instruction level power model 
outlined in the previous section. We start by illustrating this 
estimation process for the program shown in Table IV. The 
program has three basic blocks as shown in the figure2. The 
average current and the number of cycles for each instruction 
are provided in two separate columns. For each basic block, 
the two columns are multiplied and the products are summed 
up over all instructions in the basic block. This yields a value 
that is proportional to the base energy cost of one instance of 
the basic block. The values are 1713.4, 4709.8, and 2017.9, 
for B1, B2, and B3, respectively. B1 is executed once, B2 
4 times and B3 once. The jmp main statement has been 
inserted to put the program in an infinite loop. Cost of the 
jl L2 statement is not included in the cost of B2 since 
its cost is different depending on whether the jump is taken 
or not. It is taken 3 times and not taken once. Multiplying 
the base cost of each basic block by the number of times it 
is executed and adding the cost of the unconditional jump 
j 1 L2,  we get a number proportional to the total energy 
cost of the program. Dividing it by the estimated number 
of cycles (72) gives us an average current of 369.1 mA. 
Adding the circuit state overhead offset value of 15.0 mA 
we get 384.0 mA. The actual measured average current is 
385.0 mA. This program does not have any stalls and thus 
no further additions to the estimated cost are required. If 
in the real execution of this program, some cold-start cache 
misses are expected, their energy overhead will have to be 
added. 

To validate the estimation model described in the previous 
section, experiments were conducted with several programs. 
A close correspondence between the estimated and measured 
cost was obtained. It was observed that the main reasons for 
the discrepancy in the estimated and actual cost are as follows: 
First, for instructions that require operands, the operand values 
and addresses are often not known until runtime. Thus, average 
base costs may have to be used instead of exact costs. Second, 
the circuit state overhead for pairs of consecutive instructions 
in the program may differ from the default value used. Third, 

2 A  basic block is defined as a contiguous section of code with exactly one 
entry and exit point 

TABLE IV 
ILLUSTRATION OF THE ESTIMATION PROCESS 

Program Current(mA) Cycles 
; Block E1 
main: 
mov bp , sp 
sub sp,4 
mov dx,O 
mov word ptr -4CbpI ,O 
;Block 82 
L2 : 
mov si,word ptr -4Cbpl 
add si,si 
add si,si 
mov bx ,dx 
mov cx,word ptr -aCsil 
add bx, cx 
mov si,word ptr -bCsi] 
add bx,si 
mov dx ,bx 
mov di ,word ptr -4 Cbpl 
inc di, 1 
mov word ptr -4Cbpl ,di 
cmp di.4 
jl L2 
;Block 83 
L1: 
mov word ptr -sum,dx 
mov sp,bp 
imp main 

285.0 1 
309.0 1 
309.8 1 
404.8 2 

433.4 1 
309.0 1 
309.0 1 
285.0 1 
433.4 1 
309.0 1 
433.4 1 
309.0 1 
285.0 1 
433.4 1 
297.0 1 
560.1 1 
313.1 1 

405.7(356.9) 3(1) 

521.7 1 
285.0 1 
403.8 3 

the penalty due to stalls and cache misses is difficult to predict 
statically. As discussed in Section 111, the first two effects are 
limited in their impact on the overall cost. The inability to 
predict the penalty due to stalls and cache misses, on the other 
hand, can potentially have a greater impact on the accuracy 
of the estimate. However, for programs with no stalls and 
cache misses, the maximum difference between the estimated 
and the measured cost was less than 3% of the measured 
cost. 

A.  Overall Flow 

The overall flow of the estimation procedure is shown in 
Fig. 2. Given an assembly or machine level program, it is first 
split up into basic blocks. The base cost of each instance of 
the basic block is determined by adding up the base costs of 
the instructions in the block. These costs are provided in a 
base cost table. The energy overhead due to pipeline, write 
buffer and other stalls is estimated for each basic block and 
added to the basic block cost. Next, the number of times each 
basic block is executed has to be determined. This depends 
on the path that the program follows and is dynamic, run-time 
information that is obtained from a program profiler. Given 
this information, each basic block is multiplied by the number 
of times it will be executed. The circuit state overhead is added 
to the overall sum at this stage, or alternatively, it could have 
been determined for each basic block using a table of energy 
costs for pairs of instructions. An estimated cache penalty is 
added to get the final estimate. The cache penalty overhead 
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[ Assembly/Machlne 
Code 1 

1 Globe1 Program Cost 

(Cache Simulation) 

Fig. 2. Software energy consumption estiniation methodology. 

computation needs an estimate of the miss ratio, which is 
obtained through a cache simulator. 

V. MEMORY SYSTEM MODELING 

The energy consumption in the memory system is also a 
function of the software being executed. The salient observa- 
tions regarding the DRAM system current on our experimental 
setup are briefly described here. Details are provided in [ 111. 

The DRAM system draws constant current when no memory 
access is taking place. This current value was determined to 
be 77.0 mA or 5.3 mA, depending on whether page mode 
was active or not.3 Greater current is drawn during a memory 
access. 'The exact value of this current depends on the address 
of the present and previous memory access. For example, for 
writes, when both the previous and the present access map to 
the same page, i.e., for a page hit, the cost is 122.8 mA (for 
3 cycles including 1 wait state). For a page miss, the cost is 
247.8 mA (for 6 cycles including 4 wait states). For page hits, 
a smaller variation was observed depending on the number of 
bits that change from the previous address to the present. 

Let X be the sum of the energy costs of each individual 
memory access. Let 7~ and m bc the number of memory idle 
cycles during which the page mode is active and inactive, 
respectively. The total memory system energy cost is given 
by, ( X  -t (77.0 x 71 f5 .3  x m) x 8.25 x 10-8).7. As discussed 
above, the quantity X depends on the locaticin and sequence 
of memory accesses made by the program. Along with n and 
m, this is dynamic, run-time information, which can only 

"'Page mode active" refers to the condition when the row address has been 
latched and the Row Address Strobe (RAS) signal is actlve. 

be loosely estimated by static analysis. Thus, modeling of 
memory system energy consumption is difficult if only static 
analysis is used. However, as the above discussion shows, 
analysis of this consumption is feasible. This is significant, 
given that for systems with tight energy budgets, it is important 
to understand all sources of energy consumption. 

VI. SOFTWARE POWER OPTIMIZATION 

In recent years there has been a spurt of research activ- 
ity targeted at reducing the energy consumption in systems. 
This research, however, has by and large not recognized 
the potential energy savings achievable through optimization 
of software. This was mainly due to the lack of practical 
techniques for analyzing the energy consumption of programs. 
This deficiency has been alleviated by the measurement and 
estimation methodology described in the previous sections. 
The growing trend towards tight energy budgets necessitates 
identification and exploration of every possible source of 
energy reduction, forcing us to examine the design of energy 
efficient software. 

The energy formula described in Section 11-A shows that 
the energy cost of a program is proportional to the product of 
the average current and the running time of the program. Thus, 
the value of this product has to be reduced in order to reduce 
the energy cost. This section examines some alternatives for 
this, in the context of the 486DX2, using the results of the 
instruction level analysis that was described earlier. 

A. Instruction Reordering 

A recent work [8] presents a technique for scheduling 
instructions on an experimental RlSC processor in such a way 
that the switching on the control path is minimized. In terms 
of the energy formula, this technique is trying to reduce the 
average current for the program through instruction reordering. 

Our experiments based on actual energy measurements on 
the 486DX2, however, reveal that this technique does not 
translate into very significant overall energy reduction. This 
technique is trying to reduce what we termed as the circuit 
state overhead. As we saw earlier, this quantity is bounded by 
a small range and does not show a great amount of variation. 
In fact, it was observed that different reorderings of several 
sequences of instructions showed a variation of only up to 2% 
in their current cost. It can be concluded that this technique is 
not very effective for the 486DX2. However, its effectiveness 
on other architectures and processors should be investigated 
further. 

B. Generation of Energy ESJicient Code 

While reordering of a given set of instructions in a piece 
of code may have only a limited impact on the energy 
cost, the actual choice of instructions in the generated code 
can significantly affect the cost. As a specific example, an 
inspection of the energy costs of 486DX2 instructions reveals 
that instructions with memory operands have very high av- 
erage current compared to instructions with register operands. 
Instructions using only register operands cost in the vicinity of 
300 mA. Memory reads that hit the cache cost upwards of 430 
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hhtl.asm hht2.asm 
534.2 507.6 
9.37 8.73 
16.52 14.62 

chtl.asm cht2.asm 
527.9 516.3 
5.88 5.08 
10.24 8.65 
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hht3.asm 
486.6 
7.07 
11.35 

cht3.asm 
514.8 
4.93 
8.37 

TABLE V 
RESULTS OF ENERGY OPTIMIZATION OF SORT AND CIRCLE 

Program 
Avg. Current (mA) 

Execution Time (pee)  
Energy (10-6J) 

Avg. Current (mA) 
Execution Time (psec) 

Energy (10-6J) 

Program 

h lcc  . a m  
525.7 
11.02 
19.12 

clcc .a." 
530.2 
7.18 
12.56 

mA. Memory writes cost upwards of 530 mA and also incur a 
memory system current cost since the cache is write-through. 
Thus, reduction in the number of memory operands can lead 
to a reduction in average current. 

The reduction in energy cost, i.e., in the product of average 
current and running time would be greater still, since use 
of memory operands incurs more cycles. For example, ADD 
DX, [ BX I takes two cycles, even in the case of a cache hit, 
while ADD DX, BX takes just one cycle. Potential pipeline 
stalls, misaligned accesses, and cache misses, further add to the 
running time. Reduction in number of memory operands can 
be achieved by adopting suitable code generation policies, e.g. 
saving the least amount of context during function calls. How- 
ever, the most effective way of reducing memory operands is 
through better utilization of registers. This entails techniques 
akin to optimal global register allocation of temporaries and 
frequently used variables [ l ]  [2]. 

The impact of the above ideas on the energy cost of 
programs is illustrated here using examples. The first program 
considered is a heapsort program in C, called "sort" [3]. 
hlcc . asm is the assembly code for this program generated 
by lcc, an A N S I  C compiler [4]. The sum of the observed 
average CPU and memory currents is given in the table above. 
The program execution times and overall energy costs are 
also reported. lcc is a general purpose compiler and while 
it produces good code, it leaves room for further improvement 
of running time. Hand tuning of the code for shorter running 
time (hhtl) leads to a 15% reduction in running time. The 
average current goes up a little since of all the instructions 
that were eliminated, a greater proportion had lower average 
currents. However, due to the reduction in running time, 
the overall energy cost goes down by 13.5%. So far only 
temporary variables had been allocated to registers. In hht2, 
3 local variables are allocated to registers and the appropriate 
memory operands are replaced by register operands. Even 
though redundant instructions are not removed, there is a 5 %  
reduction in current and a 7% reduction in running time. In 
hht3, 2 more local variables are allocated to registers and all 
redundant instructions are removed. Compared to hlcc, hht 3 
has 40.6% lower energy consumption. Results for another 
program derived from the circle program [ 5 ]  are also 
shown in Table V. Significant energy reduction, about 33%, 
are observed for this program too. 

The specific optimizations used in the above examples were 
prompted by the results of the instruction level analysis of 
the 486DX2. They are discussed in greater detail in [IO]. 
In general, the ideas used for energy efficient code for one 
processor may not hold for another. An instruction level 
analysis, using the methodology described earlier, should 
therefore be performed for each processor under consideration. 
That methodology provides a way for assigning energy costs 
to instructions. The idea behind energy driven code generation 
is to select instructions using these costs, such that the overall 
energy cost of a program is minimized. An investigation of this 
issue for different architectural styles will be pursued further 
as part of research in the area of software power optimization. 

VII. ANALYSIS OF SPARClite 934 

The previous sections describe the application of the power 
analysis methodology for the 486DX2, a CISC processor. 
To verify the general applicability of this methodology, it 
was decided to apply the methodology to a processor with 
a different architectural style. The Fujitsu SPARClite 934, 
a RISC processor targeted for embedded applications was 
chosen for this purpose. A power analysis of this processor has 
been performed using the measurement and experimentation 
techniques described in the previous sections. The basic model 
of a base energy cost per instruction, enhanced by the inter- 
instruction effects remains valid for this processor, though the 
actual costs differ in value. The details of this analysis are 
described in [9]. 

VIII. SUMMARY AND FUTURE WORK 

This paper presents a methodology for analyzing the en- 
ergy consumption of embedded software. It is based on an 
instruction level model that quantifies the energy cost of 
individual instructions and of the various inter-instruction 
effects. The motivation for the analysis methodology is three- 
fold. It provides insights into the energy consumption in 
processors. It can be used to help verify if an embedded design 
meets its energy constraints and it can also be used to guide 
the design of embedded software such that i t  meets these 
constraints. Initial attempts at code re-writing demonstrate 
significant power reductions-justifying the motivation for 
such a power analysis technique. 

The methodology has so far been applied to two com- 
mercial processors, a CISC and a RISC. Future work will 
extend this to other architecture styles to characterize and 
contrast their energy consumption models. DSPs, superscalar 
processors, and processors with intemal power management 
will be considered. Finally, we hope to use this analysis in 
automatic techniques for the reduction of power consumption 
in embedded software. 
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