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Compositional Capabilities of Autoregressive Transformers:
A Study on Synthetic, Interpretable Tasks
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Abstract
Transformers trained on huge text corpora exhibit
a remarkable set of capabilities, e.g., perform-
ing simple logical operations. Given the inherent
compositional nature of language, one can expect
the model to learn to compose these capabilities,
potentially yielding a combinatorial explosion of
what operations it can perform on an input. Mo-
tivated by the above, we aim to assess in this
paper “how capable can a transformer become?”.
Specifically, we train autoregressive Transformer
models on a data-generating process that involves
compositions of a set of well-defined monolithic
capabilities. Through a series of extensive and
systematic experiments on this data-generating
process, we show that: (1) autoregressive Trans-
formers can learn compositional structures from
small amounts of training data and generalize to
exponentially or even combinatorially many func-
tions; (2) composing functions by generating inter-
mediate outputs is more effective at generalizing
to unseen compositions, compared to generating
no intermediate outputs; (3) biases in the order
of the compositions in the training data results in
Transformers that fail to compose some combi-
nations of functions; and (4) the attention layers
seem to select the capability to apply while the
feed-forward layers execute the capability.

1. Introduction
Large scale Transformers pretrained on huge text corpora
have revolutionized machine learning in recent years (Rad-
ford et al., 2018; 2019; Brown et al., 2020; Sanh et al., 2021;
Wei et al., 2021; Thoppilan et al., 2022; Touvron et al., 2023).
Due to an ever-increasing interest in adopting these models
in our daily lives, evaluating and predicting their capabilities
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Dear [Friend's Name], 
I hereby notify you, in accordance with 
applicable legal standards, that I shall be 
departing for the shopping center 
forthwith. 
Sincerely, 
[Your Name]

Tell my friend that I am going to the mall. Write 
it in legalese.

The sum of the digits of the square of the 
cube of 8 is 1.Cube of 8: 

8^3 = 8 * 8 * 8 = 512 
Now, find the square of 512: 
512^2 = 512 * 512 = 262,144 
To find the sum of the digits of this answer,  
add up the individual digits: 
2 + 6 + 2 + 1 + 4 + 4 = 19 
So, the sum of the digits of the square of  
the cube of 8 is 19.

What is the sum of the digits of the square of 
the cube of 8. Give the answer step-by-step.

What is the sum of the digits of the square of 
the cube of 8. Give the answer directly.

Figure 1: Signatures of compositionality. Chat-
GPT (Bubeck et al., 2023) correctly responds to prompts
that require composition of atomic arithmetic capabilities
(sum, cube, square)—we argue these prompts are unlikely
to be in the training data. However, the model does not
always compose reliably (top-right panel). This motivates
us to study the extent to which a Transformer can learn to
compose its capabilities by mere pretraining on a composi-
tional domain.

has become increasingly important (Bommasani et al., 2021;
Ganguli et al., 2022; Shevlane et al., 2023; Rae et al., 2021;
Hoffmann et al., 2022; Tay et al., 2022; Henighan et al.,
2020; Hernandez et al., 2021; Sharma & Kaplan, 2020).
Motivated by this, recent works have performed extensive
empirical analyses to understand the possibilities and limita-
tions of using these models in practical tasks of interest. For
example, such works show large language models (LLMs)
can generate coherent text completions based on a provided
context, perform code generation and debugging, use online
APIs and tools in an automated manner, and even solve
multimodal problems such as image captioning (Wei et al.,
2022a; Bubeck et al., 2023; Austin et al., 2021; Chen et al.,
2021; Lee et al., 2023; Liang et al., 2022; Qin et al., 2023;
Liu et al., 2023; Suzgun et al., 2022; Srivastava et al., 2022).
While this benchmarking of pretrained models is extremely
valuable, it often focuses on evaluating rather “narrow” or
“atomic” capabilities; for example, the ability to identify
whether a given passage of text is biased or toxic (Gehman
et al., 2020; Liang et al., 2022). However, given the compo-
sitional nature of training data (such as language), a model
could learn to compose its atomic capabilities and perform
complex tasks that it was never explicitly trained for. This
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can lead to an underestimation of the capabilities of the
model; vice versa, if the model does not learn to compose,
we can be certain that benchmarking for atomic capabilities
is sufficient to characterize the model.

This paper. Motivated by the above, we analyze if a
Transformer trained on a compositional data-generating pro-
cess, without any special modifications to the usual training
pipeline, can learn both relevant atomic capabilities and an
ability to compose those capabilities. Bubeck et al. (2023)
recently show that LLMs exhibit “sparks” of such com-
positional capabilities, and can generate text that merges
content of varying styles or evaluate mathematical expres-
sions through the application of a sequence of functions
(Fig. 1). However, due to their black-box nature, it is un-
clear if an LLM actually learns to compose capabilities or
merely memorizes relevant samples from its training data.
Moreover, while interacting with an LLM, it can be difficult
to guarantee that we are utilizing a prompt that will appro-
priately guide the model to use the capabilities we desire,
let alone compose them.

To circumvent challenges faced with LLMs pretrained on
real world data and focus on our specific motivation, “can
an autoregressive Transformer trained on compositional
data learn to compose its capabilities”, we choose to limit
the purview of this work to a well-defined synthetic do-
main. This is similar in spirit to recent works that utilize
synthetic datasets generated using objects like first-order
logic machines, context-free grammars, linear regressors,
modular arithmetic, and even board games to establish and
understand phenomenology of modern neural networks (Liu
et al., 2022; Allen-Zhu & Li, 2023c;a;b; Garg et al., 2022;
Li et al., 2023c; Saparov & He, 2022; Chan et al., 2022;
Bhattamishra et al., 2020; Zhou et al., 2023; Nanda et al.,
2023a;b; Li et al., 2023a; Lubana et al., 2023; Jones, 2021).
The goal of such works, including ours, is to develop inter-
pretable demonstrations and mechanistic hypotheses that
enable a characterization of the target phenomenology in a
controlled setting. Accordingly, we emphasize that we do
not intend to develop novel protocols for improving Trans-
formers’ ability to compositionally generalize, but rather
to demonstrate its existence and understand what drives it.
Overall, we make the following contributions in this work.

• A minimal synthetic setup for characterizing Trans-
formers’ ability to compose. We propose a minimal
setup involving compositions of predefined functions F
(bijections and permutations) that operate on a string
of arbitrary tokens (Section 3), which allows us to pre-
cisely study the ability of Transformers to compose func-
tions. Motivated by instruction induction and tuning
in LLMs (Honovich et al., 2022; Wei et al., 2021), we
instantiate a notion of “task tokens” which specify what
functions are to be applied to the input string. This helps

us avoid any ambiguity in task-specification (Suzgun
et al., 2022; Si et al., 2023).

• Transformers show explosion of capabilities. We char-
acterize the ability of a Transformer trained on our pro-
posed setup to compositionally generalize, i.e., to apply
a composition of specific functions chosen from F , to
an input string. We show that a Transformer, trained on
very few compositions, can generalize to exponentially
or even combinatorially many functions (Section 4.1)—
these functions are entirely “out-of-distribution”, i.e.,
the model never sees them in its training data and hence
was not explicitly trained to learn them. Crucially, al-
lowing the model to recursively process its interme-
diate outputs—i.e., stepwise inference (Kojima et al.,
2022; Wei et al., 2022b)—significantly improves compo-
sitional generalization (Section 4.3 and appendix C.3).

• Characterizing limitations and mechanisms of com-
positionality in a Transformer. We formalize a no-
tion of “distance” between the functions seen by the
model during pretraining and the ones it is evaluated on,
hence enabling a precise characterization of when the
model struggles to compose (Section 4.2). As we show,
the training data determines whether the Transformer
generalizes to an exponential or combinatorial set of
functions—which we call in-order and and out-of-order
generalization respectively. Furthermore, linear prob-
ing (Tenney et al., 2019; Li et al., 2023a), and an analysis
of the attention maps suggests the following mechanism
for solving our task: the attention layer selects the task to-
ken and the fully connected layers compute the function
corresponding to the task token (Section 4.4). We also
prove the existence of Transformers that can composi-
tionally generalize to our task and analyze why stepwise
inference helps with it (Appendix C). Our mechanis-
tic analysis and theoretical construction align extremely
well.

2. Related Work
Capabilities in a Transformer. Transformers pretrained
on large-scale, web-crawled datasets have been shown to
exhibit a slew of interesting capabilities, such as atomic
arithmetic, question answering, commonsense knowledge
reasoning, stylistic transformation of a piece of text, and
even multimodal reasoning (Radford et al., 2018; 2019;
Brown et al., 2020; Bubeck et al., 2023; Wei et al., 2022a;
2021; Rae et al., 2021; Chowdhery et al., 2022; Austin et al.,
2021; Chen et al., 2021; Bommasani et al., 2021). However,
this generality can come at the cost of a model also learning
capabilities that are undesirable (Bommasani et al., 2021;
Tamkin et al., 2021; Chan et al., 2023), e.g., producing
sensitive, biased, or toxic outputs (Weidinger et al., 2021;
McGuffie & Newhouse, 2020; Garrido-Muñoz et al., 2021;
Lin et al., 2021; Jiang et al., 2021; Abid et al., 2021; Par-
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rish et al., 2021; Xu et al., 2021; Huang et al., 2019; Sheng
et al., 2019; Gehman et al., 2020; Xu et al., 2020; Tamkin
et al., 2021). This has motivated several works focused on
understanding capabilities of a pretrained model, including
(i) predicting capabilities of a future model, e.g., via fitting
power laws to data/model scaling results (Rae et al., 2021;
Hoffmann et al., 2022; Hernandez et al., 2021; Sharma
& Kaplan, 2020; Arora & Goyal, 2023) and (ii) eliciting
capabilities of a given model, e.g., via identification of ap-
propriate prompts or via step-wise inference protocols such
as chain-of-thought, to understand what tasks a the model
can be reliably used for (Liang et al., 2022; Suzgun et al.,
2022; Lee et al., 2023). However, we argue that measuring
a language model’s performance on benchmarks to identify
the existence of a set of capabilities is bound to be insuffi-
cient for characterizing what tasks it can perform: given the
compositional nature of data these models are trained on,
it is possible that they learn to compose capabilities, hence
learning to perform several more tasks than we explicitly
train them on. In fact, with a related motivation, Yu et al.
(2023) design a benchmark for evaluating a model’s ability
to combine its skills in a recent contemporary work.

Compositionality in neural networks. The ability to
compositionally reason has been touted as a cornerstone
of human intelligence (Fodor & Lepore, 2002; Fodor &
Pylyshyn, 1988; Fodor, 1975; Schulz et al., 2016). Accord-
ingly, several works have studied the ability of a neural net-
work to compositionally generalize, usually demonstrating
a negative result, and correspondingly developing explicit
strategies that help improve the model’s ability to general-
ize (Liška et al., 2018; Hupkes et al., 2018; Lake & Baroni,
2018; Csordás et al., 2021b;a; 2022; Ontanón et al., 2021;
Lepori et al., 2023; Lewis et al., 2022; Yun et al., 2022;
Okawa et al., 2023; Hosseini et al., 2022). Our work differs
from prior literature in several ways. First, we do not intend
to develop protocols for improving compositional general-
ization in a Transformer; instead, we show that Transformers
can learn to compose its capabilities and perform tasks it
was never explicitly trained on, with autoregressive training
on tokens from a compositional data-generating process. To
this end, we define a synthetic task that allows for perfect
task specification and which avoids ambiguity from prompt
misspecification. While similar to the compositional table
lookup task used in prior work (Liška et al., 2018; Csordás
et al., 2022), our task involves a much larger set of capa-
bilities to train and test for (3125 or 4 million, depending
on the setup, compared to 128 capabilities in prior work).
Second, we aim to understand the extent of compositional
generalization in a Transformer trained on our proposed
domain, i.e., what kind of compositions does the model fail
to perform and when. We define a framework to precisely
characterize these failures modes and use the popular linear
probing protocol for understanding model internals to show
the critical role of attention layers in enabling composition-

ality (Li et al., 2023a). Finally, we analyze the impact of
step-wise inference protocols, wherein intermediate outputs
generated by the model are recursively passed to it as inputs,
and which has been used for solving several challenging
benchmark tasks recently (Suzgun et al., 2022; Wei et al.,
2022b). Similar to our work, Li et al. (2023c) study step-
wise inference in Transformers trained on synthetic data
from a compositional data generating process. However,
there are notable differences—we show that Transformers
compositionally generalize to combinatorially many new
functions and carefully controlling the training data allows
us to highlight the benefit of step-wise inference. Further-
more, Li et al. (2023b) study compositionality with prompts
used for in-context learning (Garg et al., 2022), while our
synthetic setup avoids ambiguity in specifying the composi-
tions. Many other works that study whether Transformers
can compositionally generalize (Csordás et al., 2021a; On-
tanón et al., 2021), focus on compositionality within a single
forward pass, i.e., the model is not allowed to recursively
process its inputs. We find the use of intermediate outputs
significantly simplifies the problem and, given its popular-
ity in practical scenarios (Kojima et al., 2022; Wei et al.,
2022b), our results serve as a demonstration that inference
protocols that allow Transformers to recursively refine their
outputs can lead to a wide range of capabilities, especially
ones that we never explicitly train the model for.

3. Formalizing capabilities and compositions
As noted by Hupkes et al. (2020), despite extensive work
exploring compositionality in neural networks, the term is
often used for several related concepts. To avoid ambiguity,
we thus present a definition of a “compositional model” that
captures our intended notion and, correspondingly, describe
the data-generating process used in this work to understand
Transformers’ ability to compose. Let F denote a set of
predefined automorphisms, i.e., any given function F from
the set defines a map between points from its input space
to the same space. This is motivated by the fact that the
input and output domain of a language model are generally
the same. We define an input x as a combination of two
strings [xf , xd], where xf ∈ XL

f is a sequence of L tokens
that specify a series of L functions from F , and xd ∈ XK

d

denotes a sequence of K tokens to which the series of L
functions are applied to. We refer to xf as task tokens and
to xd as data tokens. For example, let xFi be the identifier
that denotes that function Fi is applied to the data tokens and
xdk

denote the kth token from the vocabulary Xd. Assume
L = 2 and k = 1 and define a sample x = [xF1

, xF2
, xd1

].
Then, a model M : XL

f ×XK
d 7→ XK

d that takes x as input,
is expected to produce the output F2 ◦F1 (xd1

). We use [L]
to denote the ordered set (1, 2, . . . , L).

A capability, in our setup, is defined as the ability of a
model to accurately represent a function F ∈ F . We em-
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(c). Out-of-order composition

Figure 2: Data generating process for in-order and out-
of-order compositions. (a) Each of the L = 5 positions
is associated with N = 4 functions f [l]

i , in addition to an
identity function, resulting in a total of 5×4+1 = 21 basis
functions for composition. (b) The in-order compositions
select functions within the same position while (c) out-of-
order compositions allow for selecting functions across po-
sitions. Each position also includes the identity function
since it allows us to compute compositions of fewer than
5 functions. In the examples presented in (c), displaced
functions are surrounded by a black line, and we then count
the number of displaced functions.

phasize that we do not expect pretrained models in practice
to perfectly implement an arbitrary function; however, this
idealized definition affords us precision and allows us to
use accuracy over a random set of inputs to claim a model
possesses a certain capability. Based on this definition, we
intend to understand the set of capabilities—or the set of
functions—that a Transformer can implement by composing
them. We formalize this as follows.

Definition 3.1 (Compositionality.). We say a model M(.)
compositionally generalizes if, for any subset of functions
Fi ∈ F , where i ∈ [L], M ([xF1

, xF2
, · · ·xFL

, xd]) =
FL ◦ · · · ◦ F2 ◦ F1 (xd).

In practical scenarios, we would not expect the pretraining
data to present a capability in all possible scenarios that
it can be used in. For example, simple arithmetic tasks
like multiplication are often only seen in the context of
numbers with 1–3 digits in web-crawled data (Razeghi et al.,
2022), which leads to an inability of the model to perform
multiplication in higher order numbers. To model this in our
setup, we create a spurious correlation between a subset of
the functions from F and the position of their identifiers in
the task tokens xf . Specifically, we define F (l) ⊂ F as the
set of functions that are allowed at the position l in the task
tokens xf . We let |F (l)| = N for all locations l, i.e., F is
partitioned into equally sized subsets and |F| = N×L. The
notation F

(l)
i , where i ∈ [N ] and l ∈ [L], is used to denote

the ith possible function at position l. Based on the above,
we define two ways to compose L functions: in-order and
out-of-order (see Fig. 2).

Definition 3.2 (In-order vs. out-of-order Compositions.).
Consider the composition F̃ = F (l1) ◦· · ·◦F (l2) ◦F (lL) (.),

where li ∈ [L]. Denote the ordered set (l1, l2, . . . , lL) as
order(F̃ ). If order(F̃ ) equals the set [L], we say F̃ is an
in-order composition; else, we say it is out-of-order.

Consider a model M that perfectly encodes all N × L func-
tions from the set F . If the model can generalize to in-order
compositions of these functions, then its set of capabilities
will in fact grow to exponentially many functions—NL,
to be precise. Further, the ability to compose out-of-order
can increase this set combinatorially, i.e., proportional to
(N × L)L, growing even more quickly compared to the set
of in-order compositions. Such an “explosion of capabilities”
would imply that it is difficult to characterize the set of all
tasks that a pretrained model can perform, especially since
the pretraining data used for training a model is generally
unknown and hence it is hard to even characterize what
“atomic” capabilities the model possesses. In our experi-
ments, we find that while Transformers can generalize to
both in-order and out-of-order compositions, the pretraining
dataset for enabling out-of-order generalization must exhibit
some—albeit not huge—diversity (we quantify this further
when discussing our results). To empirically characterize
out-of-order compositions and discuss the failure modes
thereof, we find it useful to define the following notion of
displacement (see Fig. 2).
Definition 3.3 (Displacement.). Let D(s, s′) denote the
hamming distance between two ordered sets s and s′.
Then, the displacement of a composition F̃ is defined as
D(order(F̃ ), [L]).

3.1. Experimental Setup and Data-Generating process

Having defined our notion of compositionality in a pre-
trained model, we now briefly discuss the experimental
setup used in this work (see Appendix A for details). Specif-
ically, our data-generating process yields inputs consisting
of a sequence of 6 data tokens, xd ∈ X6

d , where each token
is drawn from a vocabulary of size |Xd| = 10. Each of the
6 elements are drawn uniformly at random, with replace-
ment, from Xd. We consider two families of functions
defined over these data tokens: bijections and permutations
(see Fig. 10). Specifically, the set Fb (which we refer to as
bijections) consists of all functions that apply a bijection
on each of the 6 tokens in an element-wise manner. The
number of such functions is the number of bijections on a
single token: there are 10! such functions when |Xd| = 10.
The second set is Fp, which is the set of all permutations
of 6 elements (|Fp| = 6!). The rationale for selecting these
function families is that both Fb and Fp are groups with
function composition as the group operator. Consequently,
the composition of two functions is also a group element.

We consider two formats for representing a sample
(see Fig. 3). Both formats start with task tokens xf , that
specify the sequence of functions to compose, followed by
the data tokens xd. The direct prompt format follows this
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(b). Step-by-step prompting:

(a). Direct prompting:

F(1)
1e.g.) bijection: 

step-by-step intermediate outputs

      𝚂 𝚇𝚏(𝟷)𝟷 𝚇𝚏(𝟸)𝟺 𝚇𝚏(𝟹)𝟸 𝚇𝚏(𝟺)𝟹 𝚇𝚏(𝟻)𝟹 𝚇𝚍𝟼𝚇𝚍𝟻𝚇𝚍𝟼𝚇𝚍𝟺𝚇𝚍𝟼𝚇𝚍𝟿 𝚇𝚍𝟿𝚇𝚍𝟽𝚇𝚍𝟿𝚇𝚍𝟺𝚇𝚍𝟿𝚇𝚍𝟶

      …  𝚂 𝚇𝚏(𝟷)𝟷 𝚇𝚏(𝟸)𝟺 𝚇𝚏(𝟹)𝟸 𝚇𝚏(𝟺)𝟹 𝚇𝚏(𝟻)𝟹 𝚇𝚍𝟼𝚇𝚍𝟻𝚇𝚍𝟼𝚇𝚍𝟺𝚇𝚍𝟼𝚇𝚍𝟿 𝚇𝚍𝟶𝚇𝚍𝟽𝚇𝚍𝟶𝚇𝚍𝟻𝚇𝚍𝟶𝚇𝚍𝟾 𝚇𝚍𝟷𝚇𝚍𝟸𝚇𝚍𝟷𝚇𝚍𝟺𝚇𝚍𝟷𝚇𝚍𝟼 𝚇𝚍𝟿𝚇𝚍𝟽𝚇𝚍𝟿𝚇𝚍𝟺𝚇𝚍𝟿𝚇𝚍𝟶

Figure 3: Direct v.s. Step-by-step prompts. The task
(rainbow) and data (blue) tokens can be completed in two
ways. They are followed by: (a) the intermediate outputs of
the composition in the step-by-step format or (b) directly by
the final result of compositions in the direct format.

with the final output of the function composition, while
the step-by-step prompt format follows this with all in-
termediate outputs of the function composition, similar to
chain-of-thought and related protocols (Kojima et al., 2022;
Nye et al., 2021; Wei et al., 2022b).

We also control the set of task tokens seen during training.
In particular, we control compositions in the training data to
either only contain in-order compositions, or also include
out-of-order compositions. The training data for random
contains task tokens, corresponding to a random subset of
the set of all possible in-order compositions. The training
data for base contains task tokens, where at most 1 position
in the composition is not the identity function. For exam-
ple, if we consider N = 4 and L = 5 like in Fig. 2, then
base contains compositions of functions where at least four
of the five positions are identity which totals to 21 func-
tions. The set of functions base helps us assess whether
mere learning of “atomic” capabilities is sufficient to yield
compositionality in a model. (See Appendix A.2)

We generate 100K samples using the process above for a
given prompt format (step-by-step or direct) and with re-
strictions on the task tokens (in-order, out-of-order, base,
random). The model is autoregressively trained on this
data using the cross-entropy loss (see Appendix A). After
training, we evaluate whether the model possesses a capa-
bility corresponding to a set of composition of functions, by
computing the accuracy of the model completion on 1000
different data tokens. The accuracy of a completion is the
average accuracy over the last 6 tokens.

4. Results
In this section, we systematically investigate the capabilities
of an autoregressive Transformer trained on synthetic tasks
with compositional structure. Broadly, we would like to
understand how this structure in the data manifests in the
network. We focus on addressing the following questions:

(1) Do Transformers compostionally generalize to functions
not present in the training data and to what extent do
they exhibit in-order and out-of-order generalization?

(2) How do properties of the training data influence in-order

and out-of-order generalization?
(3) Are there differences between direct and step-by-step

prompt formats?
(4) Do Transformers first learn to compose fewer functions

before learning to compose many of them?
(5) What is the role of the attention and feed-forward layers?
(6) Can LSTMs compositionally generalize in our setup?

We use nanoGPT (Appendix A), a Transformer with 12
layers with each Transformer block identical to the one
in Vaswani et al. (2017). We use the same architecture across
all our experiments in this section, but provide ablations that
vary the number of layers, attention heads, and embedding
dimension in Appendix B.1.

4.1. Combinatorial explosion and Exponential growth in
capabilities

Do Transformers only generalize to functions present in
the training data or do they reflect compositional structure
present in data? In Fig. 4, we train on data consisting of a
small subset of in-order compositions of bijections Fb, in the
step-by-step prompt format. We consider the composition
of 5 functions in both Figs. 4a and 4b. Each position of
the composition can be one of four choices, with the four
choices at different positions being different in Fig. 4a and
the same in Fig. 4b. In addition, any position can also be
selected to be identity.

We find that a Transformer can capture the composi-
tional structure in data and generalize to an exponential
and combinatorial set of functions in Figs. 4a and 4b, de-
spite being trained on an extremely small subset of func-
tion compositions. For example, a Transformer trained
on just 30–100 compositions of functions generalizes to
3125 unseen compositions of these functions almost per-
fectly. In contrast, we note that LSTMs fail to composition-
ally generalize in this same setup (Appendix B.2), while
Transformers with different numbers of layers and attention
heads show compositional generalization (Appendix B.1).
This indicates that the inductive bias of the architecture
contributes to compositional generalization and any au-
toregressive model is not guaranteed to succeed. We
also observe that base—which serves as a null model that
only trains on the atomic capabilities (or functions)—does
not compositionally generalize. In summary, compositional
generalization occurs with the step-by-step prompt format,
but also requires the right architecture and training data.

4.2. In-order vs. Out-of-order generalization

How do biases in the training data influence a Transformer’s
ability to compose? Are Transformers capable of both in-
order and out-of-order generalization or does it depend on
the nature of training data? For the functions in Fig. 4a,
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Figure 4: Transformers trained on the step-by-step for-
mat can generalize to an exponential (a) or combinato-
rial (b) number of new functions. We plot the accuracy
averaged over all compositions of L = 5 bijections, where
each position of composition has 4+1 choices, with one of
them being the identity function. Each curve corresponds to
training data generated by a different subset of functions and
the model is trained using the step-by-step prompt format.
(a) The choice of 5 functions are different at different posi-
tions of composition—there are 21 different functions which
can be composed (in-order) in 3125 different ways. (b) The
choice of 5 functions are identical across all 5 positions
of the composition which means there are 3125 different
ways to compose them; only 1365 of them are unique. Both
figures are evidence that one can train on a small number of
compositions of functions (around 31-100) and generalize
to exponentially (a) and combinatorially (b) many functions
that would be considered ”out-of-distribution”.

the number of in-order compositions is 55 = 3125 and
the number of out-of-order compositions is a whopping
(21)5 = 4084101; essentially all of these functions are dif-
ferent from the ones seen in the training data. Like in Sec-
tion 4.1, we only consider Transformers trained with the
step-by-step prompt format on functions from the set of bi-
jections Fb. In Fig. 5, we consider the training data to have
functions from base, some in-order and some out-of-order
compositions. We fail to see in-order or out-of-order gen-
eralization unless the data also includes in-order or out-of-
order compositions respectively. However, a small number
of in-order (10 of them) or out-of-order compositions
(100 of them) in the training data results in in-order gen-
eralization or limited out-of-order generalization. All
scenarios in Fig. 5 do not fully generalize to out-of-order
compositions. This indicates that out-of-order compositions
may require a lot more data compared to in-order composi-
tions.

4.3. Direct vs. step-by-step compositions

Both Sections 4.1 and 4.2 discuss experiments using the
step-by-step prompt format, but do these results also hold
for direct prompting? Fig. 6 (left) and Fig. 15 answer this
in the negative. Specifically, in Fig. 6 (left), we consider a
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Figure 5: The training data determines if a Transformer
generalizes to an exponential (in-order generalization)
or combinatorial (out-of-order generalization) number
of functions. Each sub-plot uses a different subset of func-
tions (from Fb) to generate the training data and we evaluate
them on combinatorial set of functions generated from 20+1
functions (one of them being identity). The x-axis varies the
number of displacements and the y-axis varies the number
of compositions—equivalently the number of functions that
are not identity. We make the following observations: (1) A
Transformer trained on just 31 functions (top-middle) gener-
alize to nearly exponentially many or 3125 compositions of
functions. (2) All the above configurations do not general-
ize perfectly to the entire combinatorial set. They however
partially generalize to nearly 4 million compositions of func-
tions. The generalization is worse if we increase the number
of compositions or displacements (see Fig. 2 for pictorial
description of displacements).

setup identical to Fig. 4a and train on a different number of
random functions. Transformers fail to generalize to new
in-order compositions with direct prompting when we
consider compositions of bijections from Fb. We observe
this failure even if we train on 2000 of the 3125 possible
in-order compositions of functions, i.e., even if the data has
high diversity. In contrast, in Fig. 4a, a mere 100 composi-
tions in the step-by-step format suffices to generalize to all
possible in-order compositions.

On the other hand, we see in-order generalization if a
Transformer is trained on a composition of a a permu-
tation function from Fp and a bijection function from
Fb. In Fig. 6 (right), we train on compositions of two func-
tions, where one position is one of 25 bijections, and the
other is one of 25 permutations. We vary the number of
compositions seen in the training data and find that 250
compositions in the training data are enough for the model
to generalize to all 625 possible compositions of the two
functions. We note that bijections and permutations operate
on orthogonal features of the input: bijections operate on
the value of the token while permutations operate on the
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Figure 6: Compositional generalization is less frequently
seen in the direct prompt format. (Left.) We train a Trans-
former using the direct prompt format on 20+1 bijections
with 5 compositions with 4 choices at each position. The
model fails to generalize to all 3125 compositions even if it
trained on 2000 such functions. (Right.) We train a Trans-
former using the direct prompt forlat on a composition of
two functions, with one function being one of 25 bijections
and the other function being one of 25 permutations (to-
talling to 625 compositions). The model is able to compose
previously unseen combinations of functions when trained
on 250 of these functions in this scenario.

position of the token. We speculate that this is important for
compositional generalization in the direct prompt format.

Why is compositional generalization harder for direct
prompts? (Appendix C.3) The ability to run multiple
forward passes through the model allows us tackle a richer
class of problems (Merrill & Sabharwal, 2023). The step-
by-step and direct prompt formats differ because the former
allows L forward passes through the model, while the latter
only allows one forward pass. As a result, we expect a
model trained with the direct prompt format to perform
more computations in a single forward pass, i.e., it must
compute the L steps of the composition in the intermediate
layers of the model.

We further formalize the intuition above in Appendix C.
Specifically, in Appendix C.3, we argue that a model trained
with the direct prompt format requires more compositions
in the training data, by a factor of O(L), compared to a
model trained with the step-by-step format. In Theorem C.2,
we prove that there exists an L-layer Transformer that can
compositionally generalize with direct prompting. However,
even with the additional training data, the direct prompt
format fails to generalize in Fig. 6 (left). This is because the
existence of a solution need not guarantee that a Transformer
trained with gradient descent converges to that particular
minima. The weights can instead converge to a minima that
only memorizes compositions present in the training data.

4.4. Towards a mechanistic understanding

In this section, we try to mechanistically explain the under-
lying mechanism for compositional generalization exhibited

by Transformers in our setup. Prior work on mechanistic
interpretability often studies smaller neural networks to ex-
tract insights for larger networks (Nelson et al., 2021; Wang
et al., 2022; Chughtai et al., 2023). The rationale relates
to the universaility hypothesis (Li et al., 2015; Olah et al.,
2020), which states that networks of different scales are
likely to learn similar functions when trained on the same
data. In line with this direction, we attempt to understand a
1-layer Transformer trained on our data generating process.

To develop a hypothesis for a mechanistic evaluation, we
first show in Appendix C.1 the existence of 1-layer Trans-
formers that can compositionally generalize to a simplified
version of our task via the step-by-step prompt format. In
particular, our construction uses the attention layer to copy
the relevant task token—similar to an induction head (Ols-
son et al., 2022)—and the feed-forward layer to compute an
single step of the function composition. The model is run
L times serially, where each run computes one step of the
function composition. The attention layer uses a position
encoding as the key and query to determine which tokens to
attend to and propagates the task token as the value.

We next evaluate if the theoretical construction, even though
a simplification, lines up with empirical evaluations on the
actual task. Specifically, we first use linear probing to un-
derstand which layers contribute to improvements in the
accuracy and then visualize the attention maps to under-
stand which tokens the model attends to.

Linear probe accuracy. In Fig. 7 (left), we use a linear
probe to analyze the importance of attention layers and MLP
layers. Following Geva et al. (2022), we fix the parameters
of probe to the last linear layer, i.e., the unembedding layer
of the trained model. We use a Transformer trained on
100 random in-order compositions of 5 functions identical
to the model in Fig. 4a. In Fig. 14 we show the results of
linear probe experiments on Transformers of different sizes.
In Transformers of different sizes, we note a sharp increase
in accuracy right after an MLP layer, i.e., the accuracy rarely
increases after an attention layer.

Visualizing attention maps. Analyzing the attention maps
of a 12-layer Transformer for a discernible pattern can be
difficult. We hence analyze the attentin maps of a 1-layer
Transformer trained for step-by-step prompts, which sur-
prisingly also exhibits in-order generalization1. In Fig. 7
(right), we plot the attention map for a predefined composi-
tion of functions from the set Fb. Keeping the task tokens
to be fixed corresponding to the predefined composition, we
sample 1000 data tokens and compute the attention map for
the 1-layer model. The average of these maps is reported in

1We use a deeper model in most experiments in the main paper
to elicit maximal performance when using the direct format; the
step-by-step format, as we argue in Appendix C, can generalize
compositionally with fewer layers (1 for in-order generalization).
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Figure 7: (Left.) Attention layer picks a function to apply
given the current input, and MLP applies the selected
function. We see a sharp increases in accuracy after
MLP layers in the last few layers of the Transformer. We
compute the linear probe accuracy—averaged over in-order
compositions of functions—after the MLP and attention
layers at every layer of the model. (Right.) Attention
is largest at the relevant data and task token. We plot
the causal attention mask of a 1-layer Transformer trained
using the step-by-step format on compositions of 5 in-order
bijections (setup of Fig. 4). Keeping the prompt fixed to a
specific composition of functions, we plot the attention map
averaged over 1000 samples. We observe that the current
data token attends to the a specific task relevant to compute
the next step of the composition.

the figure. We see that all data tokens attend to: (i) the task
token that specifies the current function to be computed and
(ii) the data token that the function is to be applied to.

The results above remarkably line up with our theoretical
construction. For example, the attention maps in Fig. 7 al-
ways attend to the relevant task token and data token when
computing the next step of the composition. The task and
data tokens are all embedded in orthogonal spaces, similar
to our construction, with the exception of 5 tokens which all
correspond to the the identity function (see Appendix B.7).
In parallel, the linear probe accuracy for a 1-layer Trans-
former in Fig. 14 shows no increase in accuracy after the
attention layer (similar to results in Fig. 7), but a sharp in-
crease in accuracy occurs after the MLP layers, indicating
that the function is entirely computed in the MLP layers.

4.5. Training dynamics

Okawa et al. (2023) show that different capabilities can
emerge multiplicatively over the course of training, i.e., a
Transformer first learns functions F1 and F2 before it learns
compositions like F1 ◦ F2. In Fig. 8, we track the accuracy
over the course of training to understand if compositions of
fewer functions are learned before compositions of many
functions. The setup for this figure is identical to Fig. 4a
with the accuracy faceted by the number of function com-
positions. We find that the order in which functions are
learned depends entirely on the training data. If the training
data consists of base and very few in-order compositions,
then a Transformer generalizes to fewer compositions (more

0 10000 20000
0

25

50

75

100
21 base + 0 random

0 10000 20000
0

25

50

75

100
21 base + 10 random

0 10000 20000
0

25

50

75

100
25 random

0 10000 20000
0

25

50

75

100
50 random

No. of compositions
5
4
3
2
1
0

A
cc

ur
ac

y 
on

 c
om

po
si

tio
ns

 o
f k

 fu
nc

tio
ns

 (%
)

Number of iterations

Figure 8: A Transformer trained on a random subset
of functions generalizes first to a composition of more
functions before it generalizes to a composition of few of
them. Each line is the average accuracy over all composi-
tion of k functions and each subplot is a Transformer trained
on a different subset of functions. The base is trained on
the individual functions and these Transformers learn to
compose a smaller set of functions (more functions in com-
position are identity) before learning to compose many of
them. The opposite is true when the model is trained on a
random subset of 25 compositions of functions.

identities) first before generalizing to compositions of mul-
tiple functions. On the other hand, if the model is trained
on 25 random in-order compositions, then it is better at
generalizing to more complex compositions of these func-
tions; this trend is lost when we train on 50 random in-order
compositions.

5. Conclusion
Given several recent works focused on prediction or elici-
tation of capabilities in pretrained models, we ask whether
the very motivation guiding these works is tractable: can
we possibly characterize all capabilities of a model, specif-
ically a Transformer, pretrained on a compositional data
domain? To address this question, we proposed a syn-
thetic, but well-defined, data domain and formalized the
notion of a capability as representing a function defined
over the domain. Breaking compositional generalization
into two relevant scenarios (in-order vs. out-of-order), we
showed that the compositional structure of the data forces
a model to learn to compose at relatively minimal data di-
versity, which indicatively address our primary question:
an appropriate prompt could make the model compose its
capabilities, yielding an “explosion of capabilities”. This
can arguably make tractable analysis of capabilities in a
pretrained model relatively difficult.
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A. Experimental Details
A.1. Training methodology

Inputs

+

Learnable 
Position Encoding

Causal Attention

Layer Norm

MLP + GeLU

N layersLayer Norm

+

+

Embedding

Softmax

Embedding

Figure 9: We use nanoGPT as the Transformer architecture
in all our experiments. The core Transformer block is a Lay-
erNorm, a causal attention block, followed by another layer-
norm and a 2-layer multi-layer perceptron (MLP). The Trans-
former block has two residual connections.

Transformer architecture We use nanoGPT2 with 12
layers, 12 attention heads and an embedding dimension of
size 120. Each transformer block contains a causal atten-
tion layer, layer-norms, residual connections and an MLP
(see Fig. 9). The MLP contains two fully-connected lay-
ers sandwiched by a GELU layer (Hendrycks & Gimpel,
2016) The first fully-connected layers has a hidden layer
with size 4 times the embedding dimension (480) and the
second hidden layer has a size equal to the embedding
dimension (120).

The input tokens are converted to one-hot vectors be-
fore being passed through to the model. We do not
use dropout or biases in the LayerNorm layers. We use
weight-tying (Press & Wolf, 2016), i.e., the input and
the output embedding layers share weights. Finally, we
make use of mixed-precision (bf16 in torch) to speed-up
training.

Loss and Optimizer Models are trained using an au-
toregressive objective to predict the next token using the
cross-entropy loss. Specifically, assume a sequence of
tokens of t tokens denoted by x1:t. Let pw(y | x1:t) de-
note the probability distribution over the next token as
predicted by a model with weights w. For a sequence
x1:T of length T , the autoregressive objective is

L(w) = −
T−1∑
t=1

log pw (y = xt+1 | x1:t) .

Training is performed for 100 epochs with a cosine-annealed scheduled with warmup. We use an initial learning rate of 3e-4
annealed eventually to 6e-5. We use AdamW as the optimizer (β1 = 0.9 and β2 = 0.95) with a weight decay of 10−3 and a
batch-size of 512. We also make use of gradient clipping with a magnitude of 1.

A.2. Data generating process

Data and task tokens. Both data and task tokens are converted to one-hot vectors before being fed to the Transformer.
The set of data tokens is denoted by Xd and the size of the vocabulary, |Xd|, is 10 in all our experiments. The data tokens
in the input xd ∈ X6

d is a sequence of 6 tokens and is the input to the function composition. The 6 tokens are sampled
uniformly at random from Xd with replacement.

There are two sets of functions considered in this work. The set of functions Fb (which we refer to as bijections) applies a
lookup table in an element-wise fashion to each of the 6 tokens in xd. The set of functions in Fp permute the 6 tokens in xd.
The family of functions in Fb and Fp are described in Fig. 10. Each function from Fp and Xb has its own task token in XF .

The input starts with a sequence of L task tokens xf ∈ XL
F . The number of compositions is generally L = 5, but in a few

experiments like Figs. 15, 6 (Right), L = 2.

Sampling task tokens The task tokens can be sampled such that they satisfy certain properties. For example, let us
consider the composition of two functions—one from the set F1 ⊂ Fp and another from F2 ⊂ Fb (which is the setting in
Fig. 6 (Right)). We can restrict the training data to compositions from the set F2 ◦ F1 which are in-order compositions

2https://github.com/karpathy/nanoGPT
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(see Fig. 2). Alternatively, we can also choose to include out-of-order compositions, which include compositions from
F1 ◦F1,F2 ◦F2 and F1 ◦F2. In Fig. 6 (Right), we restrict our training and evaluation to in-order compositions of functions
and we observe that training on a subset of the elements from F2 ◦ F1 suffices to compositionally generalize all functions in
the set.

Two other commonly used subsets of functions are base and random. Consider F1,F2, . . . ,F5 ⊂ Fb. The set random con-
siders k functions from the set F5 ◦ F4 ◦ · · · ◦ F1 which are drawn uniformly at random.

base is used to test if the compositionality is seen when the Transformer is trained on the individual functions from
Fi for all i ∈ [5]. In the training data, all compositions have 4 of the 5 functions to be the identity function I , i.e it
considers compositions of the form I ◦ I ◦ F3 ◦ I ◦ I or I ◦ F4 ◦ · · · ◦ I . There are a total of 1 +

∑5
i=1 Fi such functions;

the 1 is when all 5 functions in the composition are identity. The model is never trained on the composition of two or
more functions, and at least compositions of 3 functions are necessary to generalize to all in-order compositions Fig. 18.

xd3 xd9xd2xd8 xd7 xd3

xd8 xd3xd9xd3 xd2 xd7

xd

Fp(xd)

Fp ∈ ℱp

=

=

xd

Fb(xd)
Fb ∈ ℱb

=

 Set of Bijections ℱb

 Set of Permutations ℱp

gg gggg

g : Xd ↦ Xd
xd1 → xd10
xd2 → xd4
xd3 → xd6
xd4 → xd9
xd5 → xd3
xd6 → xd2
xd7 → xd5
xd8 → xd7
xd9 → xd1
xd10 → xd8

xd8 xd3xd9xd3 xd2 xd7=

xd7 xd6xd1xd6 xd4 xd5

Figure 10: A permutation from Fp permutes the 6 tokens in the input
xd. A bijection from Fb applies a lookup table to each of the 6 tokens
individually.

Generating a sequence of tokens A se-
quence starts with a sequence of two task
tokens xf = [xF1

, xF2
] followed by a se-

quence of data tokens xd. The sequence
can either be presented in: (i) The step-by-
step format, where the intermediate outputs
are also included in the sequence; e.g., the
sequence in the step-by-step format would
look like [xF1

, xF2
, xd, F1(xd), F2(F1(xd))]

(see Fig. 11a) or (ii) The direct format,
which does not include the intermediate out-
puts of the composition in the sequence
and an example of such a sequence is
[xF1

, xF2
, xd, F2(F1(xg))] (see Fig. 11b).

The step-by-step and direct formats are also
discussed in Fig. 3. The training data consists
of 100,000 sequences for all experiments in
one of the two formats.

g1 h2 x

f2(x)

f2 f2(x)

g1(f2(x)) h1((g1(f2(x)))

g h xf

h(g(f(x)))

f1 f2

f3

h2

g1

h1g2

h3

g1 h2 xf2 f2(x)g1 h2 xf2 g1(f2(x))

f1 f2

f3

h2

g1
h1g2

h3

f1 f2

f3

h2

g1

h1g2

h3

(a)

h1((g1(f2(x)))

f1 f2 f3

h2

g1

h1

g2

h3

g1 h2 xf2

h1((g1(f2(x)))

f1 f2 f3

h2

g1

h1

g2

h3

g1 h2 xf2

(b)

Figure 11: Step-by-step composition v.s. Direct composition. We test two possible routes for compositions. (a) Step-by-
step prompting, which allows for generating intermediate outputs. (b) Direct prompting, where the model must compose the
functions without the intermediate outputs.

Evaluating compositions When evaluating trained models, we evaluate on 1000 different inputs for every composition
of functions. Since Fig. 5 requires us to evaluate on a combinatorial set of functions, we sample 1000 functions (or the
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total number of functions, whichever was lower) for each cell which can be identified by the displacement and number
of compositions; we then compute the accuracy averaged over those functions to populate the cell. The accuracy of a
completion is calculated by averaging the accuracy of the last six tokens. We see that qualitative trends do not change when
we use different metrics Fig. 19.

Computing linear probe accuracy We consider the outputs after every attention block and every MLP block (including
the residual stream in both cases). We then pass these outputs through the final embedding layer and a Softmax layer to get
predictions over the next token. We use these predictions to compute the accuracy at that layer. The accuracy is averaged
over 1000 different input data tokens and for 200 different compositions of functions.

B. Additional Experiments
B.1. Sweeping hyper-parameters of the Transformer
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Figure 12: Transformers requires at least 2-3 layers for
compositional generalization with the direct prompt for-
mat. We vary the number of layers in the Transformer and
train on direct composition in a setup identical to Fig. 6 (Right).

We vary the number of layers, the number of attention
heads, and the embedding dimension of the nanoGPT
model in Fig. 13. We consider a setup identical to Fig. 4;
all models are trained on 50 random in-order composi-
tions of 5 bijections. We report accuracy averaged over
all 3125 in-order compositions.

We make the following observations. (1) Most surpris-
ingly, the accuracy reduces as the number of layers be-
come huge for this compositional task; we expect that this
is due to issues with optimization of a large depth model.
(2) The accuracy does not change with the number of at-
tention heads for a 1-layer Transformer. (3) The accuracy
increases as we increase the embedding dimension and
the model under fits the training data when the embedding
dimension is too small.
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Figure 13: We see compositionality in Transformers even if we change the number of layers and attention heads.
Compositionality is seen even in a 1-layer Transformer when trained with the step-by-step prompt format on 50 in-order
compositions of bijections. However the ability to compose degrades as we increase the number of layers in the Transformer.

B.2. LSTMs do not learn to compose

We report results on autoregressively trained LSTMs using the direct prompt format from Table 1 and the step-by-step prompt
format in Table 2. LSTMs fail to generalize outside of the training data while Transformers generalize compositionally
in both these scenarios. This points to an inductive bias that helps Transformers trained with an autoregressive objective
generalize. Specifically, our mechanistic evaluation in Sec. 4.4 shows this is likely attributable to the use of Attention.

The LSTMs are trained using the same data using the autoregressive objective defined in Appendix A. We use the AdamW
optimizer with learning rate equal to 3e-4 (β1 = 0.9 and β2 = 0.95), batch size of 512 and weight decay of 1e-4 for 150
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epochs. As is common, we do not use a positional embedding, since the architecture is not permutation invariant.

Hidden dimension
Layers 256 5124

1 22.5 46.0
2 33.4 69.1

Table 1: LSTMs fail to compose in the direct prompt format. We train an
LSTM on 250 composition of two functions (one permutation and one bijection)
in the direct prompt format and tabulate the accuracy (%); the setup is identical
to Fig. 6 (Right).

The inputs are passed through an input
embedding layer before being passed
to the LSTM and the outputs of the
LSTM are also passed through a linear
layer which outputs the logits. In our
experiments, we vary the number of
stacked LSTMs (or no. of layers) and
the dimension of the internal hidden
vector.

Despite our attempt to train multiple
different LSTMs with the best set of
hyper-parameters, we observe that they do not show any compositional generalization on all our synthetic setups. This
observation is further evidence for our hypothesis that the attention layers are important for compositionality.

Hidden layer dimension
Layers 120 256 512 1024

1 16.2 36.2 99.9 99.9
2 60.3 99.3 99.9 99.8
4 18.7 100.0 100.0 9.9

Hidden layer dimension
Layers 120 256 512 1024

1 9.3 10.3 20.1 22.9
2 12.4 21.3 25.3 28.8
4 6.6 13.9 17.6 10.0

Table 2: LSTMs fail to compose in the step-by-step prompt format. We train autoregressive LSTMs on 50 in-order
compositions of 5 bijections from Fb in the step-by-step format and tabulate the accuracy (%); The setup is identical to Fig. 4.
We evaluate the LSTM on the (left) compositions seen during training and (right) in-order compositions not seen during
training. LSTMs fail to generalize to functions outside of the training data while transformers generalize compositionally in
the same setting.

B.3. Attention Masks

Detailed setup. We train a 1-layer Transformer on a composition of 50 random in-order compositions of 5 bijections in
the step-by-step prompt format. We visualize the attention masks for a fixed sequence of task tokens, averaged over 1000
different data tokens in Fig. 7(right). We found the attention masks to be identical across different choices of the task tokens.
Each row corresponds to a causal attention mask for a single token and sums up to 1. At any given row, the attention is
over two elements—the task token and the intermediate output of the composition. The five contiguous blocks along the
columns correspond to the five steps of composition. These preliminary results indicate that it is possible to build a complete
mechanistic understanding of attention for compositional tasks (see also Sec. C).

B.4. Probing the layers in Transformers of different sizes

In this section, we consider an experimental setup that is identical to the linear probe experiments in Fig. 7. We compute the
probe accuracies for Transformers with different number of layers in Fig. 14. Across all models, we observe that accuracy
increases in the last few layers. Furthermore, we also observe a sharp increase in accuracy right after the MLPs in the last
few layers of the transformer.

We saw in Fig. 7(right) that the attention masks for a 1-layer model seem to select an input and a task token to operate on at
every step of the composition. We hence believe that attention has a huge role in compositionality and propose the following
hypothesis: The probe accuracy after some MLPs see a sharp in increase in accuracy because the attention layers play a
critical role in selecting the right inputs to pass to the MLP. Specifically, unlike the 1-layer model, we suspect functions
are now distributed across the model layers instead of being localized in the first MLP layer. Consequently, similar to the
1-layer model, attention heads at different layers will infer if the relevant functions implemented in MLP layers in that block
are part of the prompt; if so, they transfer the input data through said function.
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Figure 14: We use a linear probe to study the accuracy at different layers on Transformers of different sizes. Most
architectures see an increasing in accuracy in the latter half of the Transformer. The increase in accuracy is more gradual for
Transformers with more layers. The accuracy increases sharply after an attention layer across all architectures.
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Figure 15: Transformers fail to generalize to compositions of even 2 bijections, when trained with the direct prompt
format. The curve depicts the accuracy over all 625 in-order compositions of two bijections (25 choices for each bijection)
when trained on different subsets of in-order compositions. The model is trained with direct composition. Even if we train
on 500 such compositions, the model fails to generalize to the remaining 125 compositions. This is additional evidence that
the model is incapable composing bijections through direct composition.
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B.5. Another failure with the direct format with bijections

In Fig. 6 (Left) we show that Transformers do not learn to compose 5 bijections and only generalize to compositions in the
training data. Fig. 15 augments this result and shows that a similar failure occurs even when we consider the composition
of just two bijections. Hence the model may not compose some function in the direct prompt format and the step-by-step
format with an autoregressive objective is far more amenable to compositions.

B.6. Additional experiments with training data from random and base

In this section, we conduct a collection of analyses for a model trained on in-order compositions of 5 bijections in the
step-by-step prompt format. We perform the following experiments: (1) compare how base and random generalize to other
in-order compositions (Fig. 16); (2) change the number of random functions in the training data (Fig. 17); (3) limit the
maximum number of compositions in the training data and evaluate compositional generalization (Fig. 18); (4) look at
alternate evaluation metrics (Fig. 19); and (5) test if the compositions are systematic (Hupkes et al., 2020) (Fig. 20).
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Figure 16: How do different training datasets generalize to compositions of many and few functions? This is a
fine-grained version of Fig. 4a. Model trained on 50 random compositions generalizes poorly compositions of small number
of functions while a model trained on the base generalizes poorly to composition of 4 or 5 functions.
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Figure 17: Training with different numbers of random functions. We train on a different number of random functions
ranging from 5-70 in steps of 5. These plots are the accuracies averaged over all in-order compositions of 5 bijections over
the course of training.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Compositional Capabilities of Autoregressive Transformers: A Study on Synthetic, Interpretable Tasks

0 5000 10000 15000 20000

0

20

40

60

80

100

5 compositions in training data

No. of functions
25
50
100
200

0 5000 10000 15000 20000

0

20

40

60

80

100

4 compositions in training data

No. of functions
25
50
100
200

0 5000 10000 15000 20000

0

20

40

60

80

100

3 compositions in training data

No. of functions
25
100
200

0 5000 10000 15000 20000

0

20

40

60

80

100

2 compositions in training data

No. of functions
5
10
20

Av
g.

 a
cc

ur
ac

y 
ov

er
 a

ll 
31

25
 fu

nc
tio

ns
 (%

)

Number of iterations

Figure 18: Limiting maximum number of compositions in the training data. The figure plots the accuracy on all in-order
compositions against the number of training iterations. Each sub-plot considers compositions of size exactly 2, 3, 4, 5,
respectively in the training data. The model is able to generalize to most in-order compositions only if the training data
consists of compositions of size at least 3 (bottom-right).
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Figure 19: Evaluation metric. We consider 3 different metrics for evaluating the models. The left column considers
the average accuracy when the model generates The choice of metric doesn’t change qualitative trends. Each sub-plot
considers compositions of only size 2, 3, 4, 5, respectively. In each plot, we vary the number of such functions that are
present int he training data. One exception is when we train on compositions of size 2. In this case, the guided generation
accuracy is high, but the free generation accuracy is not.
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Figure 20: Systematicity. We consider trained models from Fig. 4a and analyze the accuracy of each of the 20 functions
(atomic capabilities) when averaged all instances in which it was used compositionally. We breakdown the results to see if
certain functions are more accurate when used in compositions compared to others and find that models seem to learn all
functions equally well.

B.7. Token embeddings

We study the token embeddings of the Transformer models and observe that they are similar for models with different
number of layers and attention heads (see Fig. 21). We notice a block diagonal structure that separates task tokens from the
data tokens. We also observe another block diagonal structure within the task tokens which occurs when we train only on
in-order compositions.
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Figure 21: Word embedding correlations present a block-diagonal structure that separates data tokens from task
tokens. We plot the inner product between all pairs of word embeddings of the tokens. The task tokens are orthogonal to the
set of input tokens. Different functions in the same level, i.e. {F (l)

i }Ni=1 for a fixed l, form a block-diagonal in this matrix.
We observe similar word embeddings in Transformers of different sizes.
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C. Analysis of Step-by-step and Direct Prompt Formats
C.1. Transformers for the step-by-step prompt format

We prove that there exists Transformers that can compositionally generalize in the step-by-step prompt format. Such a
constructive proof, similar to (Von Oswald et al., 2023; Ahn et al., 2023; Weiss et al., 2021; Li et al., 2023c), can be used to
generate plausible mechanistic hypothesis by highlighting the role of the attention and MLP layers. While the universal
approximation theorem suggests that any function can be represented by a wide enough multi-layer perceptron (MLP), the
construction suggests that Transformers can represent the same function efficiently.

Description of the data. We will operate with a simplified prompt format where a composition of three functions is to be
applied to a single input token. The construction can be generalized to compositions of more functions or to multiple input
tokens. The input prompt [xF1 , xF2 , xF3 , xd] has three task tokens and a single data token, and the desired output for this
prompt is [F1(xd), F2 ◦ F1(xd), F3 ◦ F2 ◦ F1(xd)].

The position encodings P =
[
p1 p2 · · · p6

]
are learnable parameters and have dimension dp, i.e., P ∈ Rdp×6. The

number of input tokens is dv and the number of task tokens is df . Both input tokens xd and task tokens xF1 are embedded
as a one-hot vector in Rdx where dx = dv + df . The first dv dimensions are used to embed the data tokens and the last
df dimensions embed the task token. Henceforth, both xd and xF1

refer to the corresponding one-hot vectors in Rdx . For
convenience, we define d = dx + dp. Tying this back to to section 3, observe that |Xd| = dv and |Xf | = df . We denote the
input to the model using Z, which includes the token embedding and position encoding. Specifically, we have

Z =

[
xF1

xF2
xF3

x F1(xd) F2 ◦ F1(xd)
p1 p2 p3 p4 p5 p6

]
,

i.e., Z ∈ Rd×6. We assume that the position encoding is concatenated to the token embedding as opposed to added to it.

Matrix notation. We use 1xd
to denote a one-hot vector in the space Rdv , i.e., it excludes dimensions for the task token.

On the other hand, xd denotes a one-hot vector in Rdx . We use In×n to denote an identity matrix of size n× n, 1m×n and
0m×n to denote matrices of 1s and 0s of size m× n, and 1n and 0n to denote matrices of size n× 1.

Description of the architecture. Before describing the Transformer architecture, we first define the attention and MLP
layers. We use a simplified parameterization of linear attention (Ahn et al., 2023) with weights Q and K. The MLP contains
two fully connected layers with a ReLU non-linearity parameterized by the weights W1 and W2. The attention and MLP
layers are functions of Z ∈ Rd×6 and are defined as:

AttnQ,K(Z) = (KZ)(M ⊙ ZTQZ), and
MLPW1,W2

(Z) = W2ReLU(W1Z),

where Q,K ∈ Rd×d, W1 ∈ Rd×(dfdv) and W2 ∈ R(dfdv)×d. The matrix M ∈ R6×6 enforces causal attention and restricts
the attention to inputs from previous time-steps, i.e.,

M =


1 1 1 · · · 1
0 1 1 · · · 1
...

...
...

...
...

0 0 0 · · · 1

 .

We consider a 1-layer Transformer with an attention layer followed by an MLP layer. We omit layer-norm to simplify the
proofs. The function computed by the Transformer is

TrQ,K,W1,W2
(Z) = MLP (Attn(Z) + Z) + Attn(Z) + Z) .

Henceforth, we omit the subscripts of Attn, MLP and Tr for brevity. We include a residual connection after both the
attention and MLP layers which mirrors a typical Transformer architecture (Vaswani et al., 2017).

The output of the Transformer is passed through an unembedding matrix We followed by a Softmax layer to obtain a
probability distribution over the next token denoted by

P (Y |Z) = Softmax(WeTr(Z)).
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Theorem C.1. There exists weights P,Q,K,W1,W2 and position encodings P such that the Transformer can Autoregres-
sively compositionally generalize to any prompt of the form [xF1 , xF2 , xF3 , xd]. The values of the weights satisfy

PTP =

[
I3×3 I3×3

I3×3 I3×3

]
, Q =

[
0d×d 0d×dp

0dp×d Idp×dp

]
, K =

0dv×dv
0df×dv

0d×dp

0df×dv
Idf×df

0d×dp

0dv×d 0df×d 0dp×dp

 ,

W1 =



1
T
xd1

1
T
xd1

1
T
xd1

· · · 1
T
xd1

1
T
xd2

1
T
xd2

1
T
xd2

· · · 1
T
xd2

...
...

...
...

1
T
xdv

1
T
xdv

1
T
xdv

· · · 1
T
xdv

0Tdv
−1Tdv

−1Tdv
· · · −1Tdv

−1Tdv
0Tdv

−1Tdv
· · · −1Tdv

...
...

...
...

−1Tdv
−1Tdv

−1Tdv
· · · 0Tdv

0dp×dv 0dp×dv 0dp×dv · · · 0dp×dv



T

︸ ︷︷ ︸
df×dvcolumns

, and W2 =



Fi1(xd1
)T − xT

d1
− xT

Fi1

Fi1(xd2
)T − xT

d2
− xT

Fi1

...
Fi1(xdv

)T − xT
dv

− xT
Fi1

Fi2(xd1)
T − xT

d1
− xT

Fi2

Fi2(xd2
)T − xT

d2
− xT

Fi2

...
Fi2(xdv

)T − xT
dv

− xT
Fi2

...
FiT (xd1

)T − xT
d1

− xT
FiT

FiT (xd2)
T − xT

d2
− xT

FiT

...
FT (xdv

)− xdv
− xFiT



T

.

Proof. See Appendix C.4.
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Figure 22: We see a sharp increase in accuracy
as we increase the embedding dimension of the
Transformer. The number of hidden units in the
MLP of the Transformer is 4 times the size of the
embedding dimension.

The construction uses the attention layer to aggregate the task token
and data token, i.e., attention selects the relevant task token. The
query vector of the attention selects the right task using the position
encoding. The first layer of the MLP projects the summation of the
task and data tokens (present in orthogonal spaces) onto the Cartesian
product of the set of task and data tokens. The second layer computes
the function and acts similar to a lookup table (Geva et al., 2022).

The construction requires the output of the first fully-connected layer
has size at least dfdv in order to encode the task and input tokens.
In our experiments, we set dv = 10 and df = 21 and hence the
number of hidden units must be at least 210. In practice, we require
at least 500 hidden units (see Fig. 22), which is not too far from our
estimate. We conjecture that the additional hidden units are helpful
for optimization.

C.2. Transformers for the direct prompt format

We also prove the existence of a Transformer for the direct prompt
format. Unlike the step-by-step format, the direct prompt format lacks
a “scratchpad” (Nye et al., 2021) for the intermediates outputs of the composition. In our construction, we use K = 3
Transformer blocks to compute the composition of K functions; the output of the k-th block is the result of the kth step of
the composition.

Description of the data. We consider the composition of 3 functions with an input prompt denoted by [xF1 , xF2 , xF3 , xd].
Unlike the step-by-step format, the output is just a single token [F3 ◦ F2 ◦ F1(xd)]. The position encodings are denoted
by P = [p1, p2, . . . , p4] where pi =

[
pTi1 pTi2 pTi3

]T
and pi ∈ Rdp and pij ∈ Rdp/3. The dimensions dx, dv, d and dp
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represent the same quantities. We use d̄p to replace dp

3 . The input to the model is

Z =


xF1 xF2 xF3 xd

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 ,

where Z ∈ Rd×4.

Description of the architecture. Each Transformer block is defined similar to the step-by-step format, i.e.,

BlockQi,Ki,Wi1,Wi2(Z) = MLPi(Attni(Z) + Z) + (Attni(Z) + Z),

which we henceforth denote by Blocki(Z). Unlike the step-by-step format, the model is now composed of 3 blocks
corresponding to the 3 steps of the compositional task the model is expected to solve, i.e.,

Tr(Z) = Block3(Block2(Block1(Z))).

This input is passed through a Softmax layer to predict a probability distribution over the next token, denoted by P (Y |
Z) = Softmax(WeTr(Z)).
Theorem C.2. There exist weights Pi, Qi,Ki,W1i,W2i for i ∈ [1, 3] and position encodings P such that the a 3-layer
Transformer can compositionally generalize to any prompt of the form [xF1

, xF2
, xF3

, xd]. The values of the weights satisfy

Q1 =


0d×d 0d×d̄p

0d×d̄p
0d×d̄p

0d̄p×d Id̄p
0d̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

 , Q2 =


0d×d 0d×d̄p

0d×d̄p
0d×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
Id̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

 ,

Q3 =


0d×d 0d×d̄p

0d×d̄p
0d×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

Id̄p
,

 , K1 =

0dv×dv 0df×dv 0d×dp

0df×dv Idf
0d×dp

0dv×d 0df×d 0dp×dp

 ,

K2 =
K1

2
, K3 =

K1

3
,

PT
1 P1 =


1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

 , PT
2 P2 =


1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

 , PT
3 P3 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1

 ,

W11 =



1
T
xd1

1
T
xd1

1
T
xd1

· · · 1
T
xd1

1
T
xd2

1
T
xd2

1
T
xd2

· · · 1
T
xd2

...
...

...
...

1
T
xdv

1
T
xdv

1
T
xdv

· · · 1
T
xdv

01×dv −11×dv −11×dv · · · −11×dv

−11×dv 01×dv −11×dv · · · −11×dv

...
...

...
...

−11×dv
−11×dv

−11×dv
· · · 01×dv

0dp×dv 0dp×dv 0dp×dv · · · 0dp×dv



T

︸ ︷︷ ︸
df×dvcolumns

, W12 =



Fi1(xd1
)T − xT

d1
− xT

Fi1

Fi1(xd2
)T − xT

d2
− xT

Fi1

...
Fi1(xdv

)T − xT
dv

− xT
Fi1

Fi2(xd1
)T − xT

d1
− xT

Fi2

Fi2(xd2)
T − xT

d2
− xT

Fi2

...
Fi2(xdv )

T − xT
dv

− xT
Fi2

...
FiT (xd1)

T − xT
d1

− xT
FiT

FiT (xd2
)T − xT

d2
− xT

FiT

...
FT (xdv

)− xdv
− xFiT

.



T

W21 = W22 = W23, and W31 = W32 = W33.
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Proof. See Appendix C.5.

C.3. Difference between the direct and step-by-step prompt formats

The ability to run multiple forward passes through the Transformer allows us tackle a richer class of problems (Merrill &
Sabharwal, 2023). This ability differentiates the step-by-step and direct prompt formats. In the step-by-step prompt format,
the Transformer makes L different forward passes, while the direct prompt format allows only one forward pass through
the model to generate the output. This is also mirrored in our constructions in appendices C.1 and C.2—a model for the
step-by-step prompt format requires only 1 layer, while one for the direct prompt format uses L = 3 layers to compensate
for the lack of multiple forward passes. We expect that a Transformer for the direct prompt format cannot circumvent these
computations and conjecture that our Transformer construction for the direct format (in appendix C.5) is efficient with
respect to the number of layers.

Conjecture C.3. We conjecture that a Transformer with width of poly(|F|), needs O(L) layers in the direct prompt format
compared to the O(1) layers step-by-step format in order to compositionally generalize on our synthetic task.

That is, a model must compute all L intermediate outputs of the composition across different layers of the Transformer. We
expand on this further in the next subsection. We also note that as per the universal approximation theorem, it is certainly
possible to construct a Transformer with 1-layer such that it generalizes for the direct prompt format; however, such a model
must have its width to be exponential in |F| in order to store |F|L different functions in a single layer.

C.3.1. HOW MANY TRAINING COMPOSITIONS DOES EACH PROMPT FORMAT NEED?

To further understand the difference between the two prompt formats, we will use a (highly simplified) model to reason
about the number of function compositions in the training data that is required for perfect compositional generalization on
our task. Let us consider a composition of L of functions from F . We assume that the compositions in the training data
FL

train ⊂ FL are sampled uniformly at random from the set of all compositions.

For this analysis, we assume that the Transformer can perfectly identify which functions to compose—which we ascribe to
the attention layers—and will focus entirely on capability acquisition which we hypothesize is carried out by the MLP layers.
We assume that a Transformer for the step-by-step prompt format must learn a function (capability) only once, while a
Transformer for the direct prompt format must learn the function L different times—once for each layer of the Transformer.
If the function composition F (l) ∈ FL

train occurs in the training data, we assume that the Transformer for the step-by-step
format has learned all the capabilities F (l)

i ∈ F (l) for i ∈ [1, L], while a Transformer for the direct prompt format can only
learn capability F

(l)
i at layer i. These assumptions are informed by Theorems C.1 and C.2.

Detour into the coupon collector’s problem. In order to learn all F = |F| capabilities, the training data must contain
each capability at least once. We note that this is the coupon collector’s problem (Myers & Wilf, 2006): the collector seeks
all distinct coupons and recieves a coupon at every round drawn uniformly at random. The number of rounds corresponds to
the number of function compositions in the training data and we would like to calculate the expected number of rounds
required to learn all capabilities. It is a well known result that the expected number of rounds to collect all F coupons is
FHF where HF is the Harmonic number; asymptotically this is O(F logF ). Furthermore, the probability that we complete
a collection of size f , in n rounds is

p(L, f) =
F !

FL

{
F − 1

L− 1

}
,

where
{
F−1
K−1

}
is the Stirling number of the second kind.

In the step-by-step prompt format, we observe L capabilities (or coupons) with every composition. All capabilities are
learned if we observe each of them in at least one training sample. The expected number of training compositions N
required to learn all capabilities is O(F logF

L ) (see Xu & Tang (2011)). On the other hand, the direct prompt format can
be treated as L independent coupon collector problems and must observe each capability once for each of the L layers.
The expected number of rounds to learn all capabilities is the is the expected value of maximum number of rounds for L
indepedent coupon collector problems. If we apply Chebyshev’s inequality, we get

P (N ≥ FHF + c logF ) ≤ π2

6c2 log2 F
,
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since the variance of N is upper bounded by n2π2

6 . Hence, the maximum value of L different runs is O(F logF ) as n → ∞,
or in other words, the expected number of rounds to learn all capabilities is O(F logF ). The expected number of training
compositions differ by a factor of L between the two prompt formats, which tallies with the observation that a Transformer
is expected to learn the same set of capabilities L different times in the direct format.

In practice, we find that Transformers for the direct format can sometimes fail to compositionally generalize, even with a
large number of compositions in the training data (Section 4.3). We hypothesize that this is attributable to the optimization
landscape, i.e., gradient descent is unable to find weights that compositionally generalize and instead prefers weights that
memorize compositions of functions present in the training data. In the direct prompt, gradient descent must recover the
individual capabilities from a set of compositions of bijections and this is a computationally hard problem since it is similar
to finding the minimal generating set of a group (its time complexity is linear in the size of the group which is O(FL)).

C.4. Proof of Theorem C.1

Step 1: Computing the attention layer. The attention layer copies the task tokens onto the relevant data token similar to
an induction head (Olsson et al., 2022). We first compute the query and value matrices of the attention.

ZTQZ =


xT
F1

pT1
xT
F2

pT2
xT
F3

pT3
xT
d pT4

F1(xd)
T p5

F2 ◦ F1(xd)
T pT6


[
0d×d 0d×dp

0dp×d Idp×dp

] [
xF1

xF2
xF3

· · · F2 ◦ F1(xd)
p1 p2 p3 · · · p6

]

=


0 pT1
0 pT2
0 pT3
0 pT4
0 pT5
0 pT6


[
xF1

xF2
xF3

· · · F2 ◦ F1(xd)
p1 p2 p3 · · · p6

]
= PTP

Our construction considers a P such that pi = pi+4 for all i ∈ [1, 3] and pi · pj = 0 for all j ∈ [1, 3] and j ̸= i. The mask
M converts PTP into an upper triangular matrix, and zeroes out all entries in the lower triangle of the matrix.

M ⊙ (ZTQZ) = M ⊙ (PTP ) = M ⊙
[
I3×3 I3×3

I3×3 I3×3

]
=

[
I3×3 I3×3

03×3 I3×3

]
The attention layer computes

Attn(Z) = (KZ)(M ⊙ ZTQZ)

= (KZ)(M ⊙ PPT )

=

0dv×dv
0df×dv

0d×dp

0df×dv Idf×df
0d×dp

0dv×d 0df×d 0dp×dp

[
xF1

xF2
xF3

· · · F2 ◦ F1(xd)
p1 p2 p3 · · · p6

] [
I3×3 I3×3

03×3 I3×3

]

=

[
xF1

xF2
xF3

0d 0d 0d
0dp

0dp
0dp

0dp
0dp

0dp

] [
I3×3 I3×3

03×3 I3×3

]
=

[
xF1

xF2
xF3

xF1
xF2

xF3

0dp
0dp

0dp
0dp

0dp
0dp

]
which when added to Z yields

Attn(Z) + Z =

[
2xF1 2xF2 2xF3 xd + xF1 F1(xd) + xF2 F2 ◦ F1(xd) + xF3

p1 p2 p3 p4 p5 p6,

]
if we also include the residual stream to the output of the attention layer.
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Step 2: Computing the MLP layer. After the attention layer, the data and task tokens are aggregated at one location
in orthogonal sub-spaces. The MLP uses the task and data token to compute the function. The first fully-connected layer
projects the input Rdvdt , which uniquely identifies the task and data tokens which is used to retrived the function from W2.
The first fully-connected layer computes

(Attn(Z) + Z)TWT
1 =


2xT

F1
pT1

2xT
F2

pT2
2xT

F3
pT3

xT
d + xT

F1
pT4

F1(xd)
T + xT

F2
pT5

F2(F1(xd))
T + xT

F3
pT6





1
T
xd1

1
T
xd1

1
T
xd1

· · · 1
T
xd1

1
T
xd2

1
T
xd2

1
T
xd2

· · · 1
T
xd2

...
...

. . .
...

1
T
xdv

1
T
xdv

1
T
xdv

· · · 1
T
xdv

0Tdv
−1Tdv

−1Tdv
· · · −1Tdv

−1Tdv
0Tdv

−1Tdv
· · · −1Tdv

...
...

. . .
...

−1Tdv
−1Tdv

−1Tdv
· · · 0Tdv

0dp×dv 0dp×dv 0dp×dv · · · 0dp×dv



=



−2Tdv
· · · · · · 0Tdv

· · · · · · −2Tdv

−2Tdv
· · · 0Tdv

· · · · · · · · · −2Tdv

−2Tdv
· · · · · · · · · 0Tdv

· · · −2Tdv

−1Tdv
+ 1

T
xd

· · · · · · 1
T
xd

· · · · · · −1Tdv
+ 1

T
xd

−1Tdv
+ 1

T
F1(xd)

· · · 1
T
F1(xd)

· · · · · · · · · −1Tdv
+ 1

T
F1(xd)

−1Tdv
+ 1

T
F2◦F1(xd)

· · · · · · 1
T
F2◦F1(xd)

· · · −1Tdv
+ 1

T
F2◦F1(xd)


The above matrix has dfdv columns represented as df blocks of size dv. The 0 matrix in the first, second and third row
occupy dv columns each. In particular, they occupy the blocks j1, j2 and j3 where Fi = Fiji

, i.e. the block number
corresponds to index in the one-hot representation of the task tokens. Let 1(x,F ) denote a one-hot vector in Rdv×df , i.e.,
it is a one-hot vector that uniquely identifies the task and data token. We can succincintly express the output after the
non-linearity as follows:

ReLU(W1(Attn(Z) + Z)) = ReLU((Attn(Z) + Z)TWT
1 )T )

=



0dv
0dv

0dv
0dv

0dv
0dv

0dv
0dv

0dv
· · · · · · · · ·

0dv
0dv

0dv
· · · 1F1(xd) · · ·

0dv 0dv 0dv 1xd
· · · · · ·

0dv 0dv 0dv · · · · · · 1F2◦F1(xd)

...
...

...
...

...
...

0dv
0dv

0dv
0dv

0dv
0dv


=

[
0dvdf

0dvdf
0dvdf

1(xd,F1) 1(F1(xd),F2) 1(F2◦F1(xd),F3)

]
Including the final weight matrix W2, we get

W2ReLU(W1(Attn(Z) + Z)) = W2

[
0dvdf

0dvdf
0dvdf

1(xd,F1) 1(F1(xd),F2) 1(F2◦F1(xd),F3)

]

=



0Td 0Tdp

0Td 0Tdp

0Td 0Tdp

F1(xd)
T − xd − xF1

0Tdp

F2 ◦ F1(xd)− xF1(xd) − xF2
0Tdp

F3 ◦ F2 ◦ F1(xd)− xF2◦F1(xd) − xF3 0Tdp



T
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Hence, the output of the Transformer is

Tr(Z) = MLP(Attn(Z) + Z) + (Attn(Z) + Z)

=



0Td 0Tdp

0Td 0Tdp

0Td 0Tdp

F1(xd)
T − xT

d − xT
F1

0Tdp

F2 ◦ F1(xd)
T − xT

F1(xd)
− xT

F2
0Tdp

F3 ◦ F2 ◦ F1(xd)
T − xT

F2◦F1(xd)
− xT

F3
0Tdp



T

+



2xT
F1

pT1
2xT

F2
pT2

2xT
F3

pT3
xT
d + xT

F1
pT4

xT
F1(xd)

+ xT
F2

pT5
xT
F2◦F1(xd)

+ xT
F3

pT6



T

=

[
2xF1

2xF2
2xF3

F1(xd) F2 ◦ F1(xd) F3 ◦ F2 ◦ F1(xd)
p1 p2 p3 p4 p5 p6

]
(0)

If we set

We =

[
Id×d 0d×dp

0dp×d odp×dp

]
,

then WeTr(Z) evaluates to [
2xF1

2xF2
2xF3

F1(xd) F2 ◦ F1(xd) F3 ◦ F2 ◦ F1(xd)
]

which will assign high probabilities to the desired token when passed through a Softmax layer. Hence, a Transformer
prompted with [xF1 , xF2 , xF3 , xd] will auto-regressively generate [F1(xd), F2◦F1(xd), F3◦F2◦F1(xd)] for any combination
of data and task tokens.

C.5. Proof of Theorem C.2

The details of construction are similar to Appendix C.4.

Step 1: Computing the output of the first block. The first Transformer block computes the first step of the composition.
The attention layer in particular, copies the relevant task token to the data token. The value and query matrices of the
attention layer in the first Transformer block are

ZTQ1Z =


xT
F1

pT11 pT21 pT31
xT
F2

pT12 pT22 pT32
xT
F3

pT13 pT23 pT33
xT
d pT14 pT24 pT34



0d×d 0d×d̄p

0d×d̄p
0d×d̄p

0d̄p×d Id̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p



xF1 xF2 xF3 xd

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34


= PT

1 P1,

and

K1Z =

0dv×dv 0df×dv 0d×dp

0df×dv
Idf

0d×dp

0dv×d 0df×d 0dp×dp

[
xF1

xF2
xF3

xd

p1 p2 p3 p4

]
=

[
xF1

xF2
xF3

0d
0dp 0dp 0dp 0dp

]
Using the above, the output of the first attention layer added to the residual stream is

Attn1(Z) + Z = (K1Z)(M ⊙ ZTQ1Z) + Z

= (K1Z)(M ⊙ PT
1 P1) + Z

=

[
xF1

xF2
xF3

0
0dp

0dp
0dp

0dp

]
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

+ Z

=

[
2xF1

2xF2
2xF3

xd + xF1

p1 p2 p3 p4

]
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Note that W11 and W21 are identical to W1 and W2 in Equation (0), and performing a similar calculation yields

Block1(Z) = W21ReLU(W11(Attn1(Z) + Z)) + (Attn1(Z) + Z)

=

[
2xF1

2xF2
2xF3

F1(xd)
p1 p2 p3 p4

]
= ZB1 .

We denote the output of the first Transformer block by ZB1
.

Step 2: Computing the output of the second block. The second block uses the output of the first Transformer block to
compute the second step of the composition. We start similarly by computing the query and value matrices of the attention
layer, i.e.,

ZT
B1

Q2ZB1
=

=


2xT

F1
pT11 pT21 pT31

2xT
F2

pT12 pT22 pT32
2xT

F3
pT13 pT23 pT33

F1(xd)
T pT14 pT24 pT34



0d×d 0d×d̄p

0d×d̄p
0d×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
Id̄p×d̄p

0d̄p×d̄p

0d̄p×d 0d̄p×d̄p
0d̄p×d̄p

0d̄p×d̄p



2xF1 2xF2 2xF3 F1(xd)
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34


= PT

2 P2

and

K2ZB1
=

1

2

0dv×dv
0df×dv

0d×dp

0df×dv Idf
0d×dp

0dv×d 0df×d 0dp×dp

[
2xF1

2xF2
2xF3

F1(xd)
p1 p2 p3 p4

]
=

[
xF1

xF2
xF3

0d
0dp

0dp
0dp

0dp

]
.

Using the above, we can compute the output of the attention layer in the second Transformer block which evaluates to

Attn2(ZB1) + ZB1 = (K2ZB1)(M ⊙ ZT
B1

Q2ZB1) + ZB1

= (K2ZB1
)(M ⊙ PT

2 P2) + ZB1

=

[
xF1

xF2
xF3

0
0 0 0 0

]
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

+ ZB1

=

[
3xF1

3xF2
3xF3

F1(xd) + xF2

p1 p2 p3 p4

]
.

The attention layer uses sub-matrix P2 of the position encodings to copy the second task token to the data token We repeat
the calculations in Equation (0), with W21 and W22 which yields

Block2(Block1(Z))) = W22ReLU(W21(Attn2(ZB1
) + ZB1

)) + (Attn2(ZB1
) + ZB1

)

=

[
3xF1 3xF2 3xF3 F2 ◦ F1(xd)
p1 p2 p3 p4

]
= ZB2

.

Step 3: Computing the output of the final Transformer block. Unsurprisingly, the calculations for the last Transformer
block are almost identical. The query matrix is ZT

B2
Q3ZB2

= PT
3 P3 and the value matrix is

K3ZB2
=

1

3

[
xF1

xF2
xF3

0d
0dp

0dp
0dp

0dp

] [
3xF1

3xF2
3xF3

F2 ◦ F1(xd)
p1 p2 p3 p4

]
=

[
xF1

xF2
xF3

0d
0dp

0dp
0dp

0dp

]
.
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The output of the attention layer in the final block is

Attn3(ZB3
) + ZB3

= (K3ZB2
)(M ⊙ ZT

B2
Q2ZB2

) + ZB2

= (K3ZB1)(M ⊙ PT
3 P3) + ZB2

=

[
xF1

xF2
xF3

0
0 0 0 0

]
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

+ ZB2

=

[
4xF1

4xF2
4xF3

F2 ◦ F1(xd) + xF3

p1 p2 p3 p4

]
.

Passing the output of Attn2(ZB2
) through the last MLP, yields the output of the Transformer, which is

Tr(Z) = Block3(Block2(Block1(Z)))

= W32ReLU(W32(Attn3(ZB2
) + ZB2

)) + (Attn3(ZB2
) + ZB2

)

=

[
4xF1

4xF2
4xF3

F3 ◦ F2 ◦ F1(xd)
p1 p2 p3 p4

]
.

Hence, the output of the Transformer is a composition of the three functions F1, F2 and F3 applied to token xd.
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